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Model transfer techniques in near infrared spectroscopy are important for 
avoiding duplicate modeling, sharing samples and data resources, and 
reducing the human and material consumption required for modeling. Use 
of the slope/bias correction algorithm (S/B) based on screening 
wavelengths with consistent and stable signals (SWCSS) for model 
transfer is a new strategy. To enable sharing of near infrared analysis 
models of pulp holocellulose and lignin content in two different types of 
spectroscopic instruments, a combined SWCSS-S/B algorithm was 
proposed. The stable and consistent wavelengths between the 
spectroscopic instruments screened by the SWCSS method reduced the 
differences between the instruments, thereby improving the universality 
and transmission accuracy of the S/B method. The SWCSS-S/B based 
model transfer method reduced the predicted standard deviation RMSEP 
of holocellulose and lignin contents of the samples measured on the target 
spectrometer of the from 5.4686 and 7.6823 to 1.2133 and 1.3494, 
respectively. This result showed a significant improvement in the transfer 
effect compared to the SWCSS and S/B correction results alone, and the 
prediction of holocellulose was better than that of the prediction effect of 
lignin. The method has fewer wavelength variables involved in model 
transfer, fast transfer speed, and high prediction accuracy, which provides 
a new solution for the wide application of NIR analytical models. 
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INTRODUCTION  
 

Holocellulose (including cellulose and hemicellulose) and lignin are the main 

components of wood. They are closely related to other wood properties as well as to the 

processing and utilization of wood. In the paper industry, the holocellulose content is 

closely related to the pulp yield and pulp quality; the lignin content is an important basis 

for the development of cooking and bleaching conditions (Haque et al. 2019). Near infrared 

spectroscopy (NIRS) is widely used in pharmaceutical, food, petrochemical, agricultural 

products, feed, tobacco, and other industries because it does not require chemical methods 

for sample pre-treatment and has the advantages of being green, efficient, non-destructive, 

and easy to implement for online use (Pažitný et al. 2011; Yu et al. 2021; Cao et al. 2022). 

However, in the practical application of spectroscopic measurements, a model built on one 

instrument (master instrument) is applied to another instrument (target instrument) with a 

large deviation or even unusable problem. Such problems are generally referred to as model 
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failure problems, and model transfer methods are generally used to solve such problems. 

Model transfer can effectively avoid duplicate modeling and realize the sharing of sample 

and data resources; it is important for the promotion of NIR spectroscopy applications 

(Wang et al. 2019; Feudale et al. 2002).  

The model transfer algorithm used can be divided into methods with standard 

samples and methods without standard samples according to whether one-to-one 

correspondence of standard spectra should be collected on all instruments (Zhang et al. 

2020). The model transfer algorithm with standard samples must take a certain number of 

samples to form a standard sample set, such as Slope/Bias (S/B) (Du et al. 2011; Zhao et 

al. 2019), direct standardization (DS) (Parrott et al. 2022) and piecewise direct 

standardization (PDS) (Bergman et al. 2006; Peng et al. 2011). Commonly used model 

transfer methods without standards include signal processing methods, such as wavelet 

transform (WT) (Bin et al. 2017; Abasi et al. 2019), orthogonal projection (Poerio and 

Brown 2018), and linear model correction (Liu et al. 2016). Ni et al. (2019) proposed a 

NIR model transfer method without standards based on the wavelength of stable consistent 

spectral signal (SWCSS) by screening out the wavelengths with stable consistent spectral 

signal between instruments and establishing a correction model for model transfer. Such 

an approach is better for model transfer prediction between spectrometers of the same type 

and with small differences, but it is not suitable for model transfer between different types 

of spectrometers because it does not use transformation sets for spectrum or model 

correction. Li et al. (2018) conducted a model transfer study for two indexes of edible oil, 

acid value and peroxide value, using the S/B algorithm combined with partial least square 

regression (PLSR) model established on a master spectroscopy instrument. The results 

show that the model prediction results were improved to different degrees after the S/B 

algorithm transfer, but the model prediction results after the S/B algorithm transfer still had 

a big gap with the ideal results. In previous studies (Liu et al. 2019a,b), the S/B method 

was applied to the transfer of pulp wood lignin NIR spectroscopy models between two 

different types of convenient NIR spectrometers, and the model transfer effects of the S/B, 

DS and canonical correlation analysis (CCA) algorithms (Li et al. 2022) were compared. 

The S/B algorithm based on linear correction among these three algorithms could not 

obtain the model transfer effect to meet the accuracy requirements. The applicability is low 

when using SWCSS and S/B algorithms alone for model transfer, and the model transfer 

between spectrometers with large differences is poor.  

In the present study, a model transfer method of SWCSS combined with S/B 

algorithm is proposed. The method reduces the differences between different NIR 

spectrometers by screening out the consistent wavelengths with small differences between 

instruments and improves the transfer accuracy and applicability of S/B algorithm, which 

makes up for the shortcomings of using SWCSS and S/B algorithm alone. Using 82 wood 

flour samples, the transfer effect of the holocellulose and lignin content models based on 

the SWCSS-S/B method was investigated between two IAS NIR spectrometers of different 

types; it was compared with the transfer effect of the SWCSS, S/B and PDS and DS 

algorithms alone. The aim was to improve the robustness and sharing of NIR correction 

models with a view to providing methodological references for the application of NIR 

spectroscopy detection techniques in the determination of the integrated holocellulose and 

lignin contents of pulpwood. 
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PRINCIPLE AND ALGORITHM 
 

Screening Wavelengths with Consistent and Stable Signals 

The standard deviations of the following two spectra were calculated based on the 

spectral information of the sample. 

 

Standard deviation of precision detection spectra 

The standard deviation SDPDS of the spectrum of the same sample taken n times in 

succession on the master spectrometer was calculated using Eq. 1, 
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where Xij is the spectral information of the jth wavelength of the measured sample at the ith 

acquisition, and n is the number of acquisitions. �̅�j is the average value of the spectral 

information of the jth wavelength. SDPDS reflects the size of the variation of the instrument 

noise and measurement error within a short period of time. The smaller the SDPDS, 

indicates a more stable spectral signal of that wavelength. 

 

Standard deviation of difference spectra between master and target Instruments 

SDDSI reflects the size of the variation of the master and target difference spectra. 

This quantity was calculated using Eq. 2, 

( )
2

1SDDSI( )
1

m

ij j

i

A A

j
m

=

−

=
−



  (2) 

where m is the number of samples, Mij and Sij are the spectral response values of sample i 

measured by the master and target at wavelength j, separately, and Aij=Mij-Sij is the 

difference spectrum between the two spectroscopic instruments. A smaller SDDSIj, 

demonstrates a smaller difference between the spectral signals of these two spectroscopic 

instruments at wavelength j, suggesting that the wavelength is more stable. 

 

Screening and optimization of stable and consistent wavelengths 

A certain number of representative samples are selected by Kennard-Stone (Zhang 

et al. 2017; Sadergaski et al. 2022) algorithm, and then, the SDDSIj and SDPDSj at 

wavelength j are calculated according to Eqs. 1 and 2 above. The ratio of these two is 

defined as the consistency parameter, 

SDDSI
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SDPDS

j

j

J
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where n is the number of wavelengths. Usually, SDDSIj is larger than SDPDSj. The closer 

bj is to 1, the smaller the spectral difference between instruments at that wavelength and 

the better the spectral signal stability. In practical applications the b value is set to filter out 

wavelengths with SDDSI1/SDPDS < b for the wavelength. In addition, the set of 

wavelengths between the master and target instruments screened according to the above 

method is noted as Uc, from which the wavelengths with large SDPDS values are excluded 

to arrive at the wavelength set with better stability Usc. 
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Slope /Bias Correction Algorithm 

The S/B algorithm is a standardized correction method for model prediction results. 

The calibration model built on the master machine is used to predict the predicted values 

Xm and Xs of the spectral matrix Xm measured on the master and target machines for the 

specimen set to obtain the spectra ym and ys, respectively. The parameters ym and ys are 

assumed to have the following relationship, 

Slope Biass my y= +   (4) 

where Slope is the slope of the linear equation and Bias is the intercept of the linear 

equation, which can be calculated by Least Square (LS). For the unknown sample spectral 

matrix Xs,un measured on the target instrument; first, ys,un is predicted by the calibration 

model built on the master instrument, and then, the passed prediction ys,tr can be found by 

the following equation, 

, ,Slope Biass tr s uny y= +   (5) 

where ys,un is the predicted value of the unknown sample and ys,tr is the predicted value of 

the unknown sample after passing. 

 

 

EXPERIMENTAL 
 

Sample Preparation and Analysis of Holocellulose and Lignin Content 
A total of 82 log samples were cut into chips and ground, and the wood flour 

samples with particle sizes of 0.250 to 0.425 mm (40 to 60 mesh) were selected to 

determine their holocellulose and lignin contents according to GB/T 2677.8 (1994). The 

results of are shown in Table 1. 

 

Table 1. Statistical Table of the Content of Holocellulose and Lignin in Wood  
 

Component 
Number of 
samples 

Minimum 
value 

Maximum 
value 

Average 
value 

Standard 
deviation 

Holocellulose 82 66.08 86.28 76.14 5.97 

Lignin 82 14.82 34.20 26.43 5.42 

 

Instrumentation and Spectral Acquisition 

The experimental instrument adopts two IAS series portable spectrometers from 

the same company (Wuxi Intelligent Analysis Service Co. Ltd, Wuxi, China). The core 

components of the instruments are digital micromirror device grating spectrometers based 

on micro-electromechanical systems, with a wavelength range of 900 to 1700 nm and a 

resolution of 10 nm. One of them is an IAS-5000 type, marked as 5000B (master 

instrument), using a down-illuminated 5W halogen tungsten light source; the other is an 

IAS-2000 type, marked as 2000 (target instrument), with an up-illuminated 10W tungsten-

halogen lamp light source. The two types of instruments are shown in Fig. 1. When 

collecting the sample spectrum, the sample was put into the measuring cup and flattened 

with a 50 g weight to make it evenly distributed, and each sample was repeatedly loaded 

three times to take the average spectrum. The number of spectral scans was 50, and for 

each sample measured, the residual wood powder in the sample cup was removed with a 

brush to avoid affecting the accuracy of subsequent sample spectra acquisition. The spectra 
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of 82 wood powder samples were collected by the above method on two types of 

instruments under the same environmental conditions, respectively. The collected spectral 

data were preprocessed using Standard Normal Variate Transformation (SNV) (Kang et al. 

2022; Maraphum et al. 2022) to eliminate the interference of surface scattering and light 

range variation of wood samples on the NIR diffuse reflectance spectra for the subsequent 

wavelength screening and modeling process. 

 
Fig. 1.  Diagram of two irradiation modes, (A) bottom-up irradiation (B) top-down irradiation 
 

Sample Set Division 

Aiming at the spectral data of 82 samples used in this paper, after extracting 3 

principal components by PCA algorithm, the Kennard-Stone method was used to divide 56 

calibration sets and 26 prediction set samples.The calibration set and prediction set samples 

of the master and target instruments corresponded to each other. The distribution of 

holocellulose and lignin contents of pulpwood is shown in Table 2. 

 
Table 2. Holocellulose and Lignin Contents of Wood Powder in Correction Set 
and Prediction Set 
 

Component 
Sample set 
Division 

Number of 
Samples 

Minimum 
Value 

Maximum 
Value 

Average 
Value 

Standard 
Deviation 

Holocellulose 
Calibration set 56 66.08 86.28 77.18 5.70 

Prediction set 26 66.22 81.70 73.89 6.03 

Lignin 
Calibration set 56 14.82 34.20 25.45 5.32 

Prediction set 26 18.20 33.84 28.55 5.11 

 

Modeling and Model Evaluation Methods 
The partial least squares regression (PLSR) method was used for modeling 

(Moreira et al. 2015). The number of latent variables was set in the range of 2-14, and 

determined by leave-one-out cross validation (Zhang et al. 2022). The calibration model 

and model transfer effect established using PLSR and the model prediction ability were 

evaluated comprehensively by the coefficient of determination (R2), root-mean standard 

error for cross-validation (RMSECV), root mean square error of prediction (RMSEP), and 

relative predictive determinant (RPD) between the predicted and true values of the samples 

in order to establish the optimal prediction model. Among them, the closer the coefficient 

of determination R2 is to 1, the better the regression or prediction result of the model, and 

if R2 is small, it indicates a very poor fit. Smaller RMSECV and RMSEP values indicate a 

better model effect (Zhang et al. 2019; Fatchurrahman et al. 2021); RPD is used to verify 
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the stability and predictive ability of the model. The model is good when RPD>2.5, average 

but usable when RPD is 2 to 2.5, and unusable when RPD<2 (Hao et al. 2022).  

 

 

RESULTS AND DISCUSSION 
 
Screening for Stable and Consistent Wavelengths 

The number of representative samples K selected from the master instrument 

samples by Kennard-Stone method was 5, 10, 15, and 20, and these representative samples 

were used to screen the wavelength Uc with consistent and stable spectral signals between 

the master and the target instruments. The wavelength set Uc of the master and the target 

was screened by SWCSS method according to the number of different representative 

samples K. Using the wavelength set Uc to build a master model to predict the variation of 

RMSEP with consistency parameter b value for the prediction set samples of the target (as 

shown in Fig. 2). During the experiment, the wavelength set Uc was screened by setting b 

to be taken from 1 to 10, but when b=1 the number of wavelengths selected according to 

the SWCSS algorithm step was 0, and the model could not be built. Therefore, Uc was 

screened by setting consistency the parameter b to take 2 to 10. The suitable b value was 

selected by predicting the minimum RMSEP of the target samples with the master PLSR 

model for both the integrated holocellulose and lignin indexes, respectively. From Fig. 2, 

it can be seen that the master model established by the Uc wavelength set screened by 

selecting 5 representative samples for holocellulose and setting b=7 had the best prediction 

effect on the target samples. The wavelength set screened by the SWCSS method based on 

holocellulose was denoted as Uch, and it contained 449 characteristic wavelengths with 

consistent and stable signals. For lignin, 20 representative samples were selected, and the 

Uc wavelength set with b=8 had the best prediction. The wavelength set screened by the 

SWCSS method based on lignin was denoted as Ucl, which contained 659 consistent and 

stable characteristic wavelengths. Since there were no wavelength points with excessive 

SDPDS values in Uch and Ucl, the wavelength sets Usch and Uscl screened by the SWCSS 

method based on holocellulose and lignin have 449 and 659 consistent wavelengths, 

respectively, and their distributions are shown in Fig. 3. 

 

  
 

Fig. 2. Prediction of RMSEP of target instrument samples with the value of consistency 
parameter b based on a master instrument holocellulose and lignin model built on stable 
consistency wavelengths 
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As shown in Fig. 3, the wavelength points Usch and Uscl selected by the SWCSS 

method based on the two indicators of holocellulose and lignin were mainly located in the 

region where the standard deviation SDDSI between the master and the target was small, 

while in the regions with large differences such as 900 to 965, 1056 to 1058, 1064 to 1068, 

1072 to 1079, 1630, 1636, 1640 to 1641 and 1644 to 1700 nm, none of them could pass the 

SWCSS screening. 

  
 
Fig. 3. Location distribution of Usch and Uscl of consistent wavelength sets of holocellulose and 
lignin screened by SWCSS method 

 

As a further analysis, the PCA method (Ferrara et al. 2022; Hasan et al. 2022) was 

used in this study to characterize the differences in spectra between NIR spectroscopy 

instruments. The PCA scores of 56 calibration set samples for the full spectra of the 2 

instruments (master and target) and the wavelength set screened based on the SWCSS 

method were calculated, and the results are shown in Fig. 4(A) and Fig. 4(B), separately.  

 

  
 
Fig. 4. Principal Components 2D Score Plot of 2 instruments 
 

As can be seen in Fig. 4(A), the differences between the master and target 

instruments characterized using the full spectrum PCA scores were significant because the 

target and master were different types of instruments, and their irradiation directions, light 

source power and assembly processes were different. The average martensite distance 

between the master and the target was 2.3679 calculated from the sample spectra. As can 

be seen in Figs. 3 and 4(B), the wavelengths screened by the SWCSS method were mainly 

located in the wavelength region where the standard deviation SDDSI of the master and 
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target instruments is small, indicating that the selected wavelengths have good consistency 

and can be effectively reduced. The difference between the two spectrometers, the average 

Mahalanobis distance between the master and the target was 0.9585. Therefore, further 

correction using the S/B method based on the consistent wavelengths screened by the 

SWCSS method may enable the model built on the master instrument to achieve higher 

prediction accuracy on the target instrument. 
 

Results and Analysis of Model Transfer of Holocellulose and Lignin in 
Pulpwood Synthesis 
Pre-transfer modeling and prediction of holocellulose and lignin models 

In this study, 56 calibration set samples were used to build PLSR models for 

holocellulose and lignin contents of the master instrument based on SWCSS and full-

spectrum wavelengths, respectively. The appropriate number of latent variables (LV) was 

selected by the leave-one-out cross-validation method (Zhang et al. 2022), and the results 

are shown in Table 3.  

 
Table 3. Prediction Results of Master and Target Prediction Sets by Master 
instrument Calibration Model before Model Transfer 
 

Component Met ods LV 
Correction set Prediction set 

R2 RPD RMSEP R2 RPD RMSEP 

Holocellulose 

Full 
Spectrum 

10 0.9641 5.2796 1.1202 0.9598 4.9847 1.1335 

SWCSS 9 0.9662 5.4393 1.0382 0.9593 4.9546 1.1937 

Lignin 

Full 
Spectrum 

10 0.9644 5.3000 0.9945 0.9475 4.3638 1.1490 

SWCSS 8 0.9681 5.5989 0.9412 0.9339 3.8898 1.2890 

 

 

  
 

Fig. 5. Correlation diagram between the measured value and the predicted value of the master 
instrument sample predicted by the master instrument model established based on different 
wavelength sets 

 

Figure 5 shows the correlation plots between the measured and predicted values of 

holocellulose and lignin contents for the 2 master calibration models in Table 3, which 

contains the fitted straight lines of the one-element regression between the predicted set of 
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holocellulose and lignin contents and the actual contents of the master samples from the 

master full-spectrum model analysis before model transfer. As shown in Table 3 and Fig. 

5, the RPDs of the predicted results of the master instrument calibration models based on 

the above different wavelength sets are all greater than 3.8. The points corresponding to 

the predicted values are all roughly distributed around the fitted straight lines in Fig. 5, and 

the offset is small. This shows that the master instrument models established by the above 

different wavelength selection methods can meet the requirements of practical applications. 

 

Model transfer results and analysis 

Both the full-spectrum-based S/B and SWCSS-S/B algorithms are standard 

samples algorithms, which require the selection of transfer set samples in the scale-sets of 

the master and the target, respectively. Therefore, the Kennard-Stone algorithm was used 

to take 5, 10, 15, 20, 25, 30, 35, and 40 samples in the specimen sets of the master and 

target instruments respectively as the transfer sets for model transfer. The relationship 

between the number of samples in the transfer set and the RMSEP is shown in Fig. 6. The 

best prediction of holocellulose and lignin was achieved by selecting 5 and 20 transfer set 

samples respectively in the model transfer process using S/B algorithm. The best prediction 

of holocellulose and lignin was achieved by selecting 25 and 30 transfer set samples 

respectively in the model transfer process between the master and target instruments using 

the SWCSS-S/B algorithm. 

 

  
 

Fig. 6. Master's holocellulose and lignin models predict target's RMSEP as a function of the 
number of samples in the transform set 

 

To further analyze the transfer effect of the SWCSS-S/B algorithm proposed in this 

study, the optimal number of transfer set samples selected by the S/B and SWCSS-S/B 

algorithms were used for model transfer of 26 prediction set samples from the target 

instrument, separately, and compared with the SWCSS, S/B, PDS, and DS algorithms 

alone. Results are shown in Table 4. There was a large prediction error when the full-

spectrum model of the master was used to analyze the target measurement samples directly, 

and the RPDs of the predicted holocellulose and lignin were 1.0815 and 0.6527, 

respectively, which cannot meet the practical application requirements. The prediction 

effect of the PDS and S/B algorithms alone for the target instrument was somewhat 

improved relative to that before model transfer, but the RPDs of both algorithms were less 

than 2.5, and the prediction accuracy was not high. In contrast, the transfer effect of using 
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the SWCSS-S/B algorithm was significantly improved, and the RPDs of predicting the 

target instrument holocellulose and lignin were 4.8746 and 3.7157, respectively, which 

were close to the transfer results of the DS algorithm. This indicates that the SWCSS-S/B 

method had better stability and transfer effect than the SWCSS and S/B algorithms alone. 

This is because the consistent wavelengths screened by the SWCSS method are located in 

the wavelength region with small differences between instruments, which greatly reduces 

the differences between the master and target instruments, and then the S/B algorithm is 

used to further correct the systematic errors that still exist after the SWCSS correction can 

achieve better model transfer results. Although the transfer effect of the SWCSS-S/B 

method is slightly inferior to that of the DS algorithm, in practical applications the former 

is involved in holocellulose and lignin model transfer at 449 and 659 wavelengths, 

respectively, with fewer wavelength variables and faster computing speed, which is 

convenient for practical applications. 

 

Table 4. Transfer Effect of Different Model Transfer Methods 
 

Component Met ods 
Master Target 

R2 RPD RMSEP R2 RPD RMSEP 

Holocellulose 

Full 
spectrum 

0.9598 4.9847 1.1335 0.1450 1.0815 5.4686 

PDS - - - 0.8058 2.2695 2.3030 

DS - - - 0.9645 5.3051 1.1148 

S/B - - - 0.8042 2.2599 2.6169 

SWCSS 0.9593 4.9546 1.1937 0.9205 3.5475 1.6671 

SWCSS-
S/B 

- - - 0.9579 4.8746 1.2133 

Lignin 

Full 
spectrum 

0.9475 4.3638 1.1490 -1.3475 0.6527 7.6823 

PDS - - - 0.8050 2.2647 2.2140 

DS - - - 0.9481 4.3914 1.1418 

S/B - - - 0.7549 2.0199 2.4825 

SWCSS 0.9339 3.8898 1.2890 0.8700 2.7733 1.8079 

SWCSS-
S/B 

- - - 0.9276 3.7157 1.3494 

 

Figures 7 and 8 are the correlation diagrams and their distribution diagrams of the 

measured and predicted values of the holocellulose and lignin contents of the target 

instrument before and after transfer using different models such as DS, PDS, SWCSS, and 

S/B independently and in combination. As a reference, the figure also draws a single 

regression fitting straight line between the predicted and actual content of holocellulose 

and lignin in the master instrument samples analyzed by the master instrument full 

spectrum model. As can be seen in Figs. 7 and 8, before the model transfer, the master 

instrument model had the worst prediction results for the holocellulose and lignin content 

of the target instrument samples, and the longitudinal offset was also the largest. The 

transfer results of the PDS and S/B methods were poor, the predicted values were obviously 

distributed on both sides of the fitted line in a wider range, and the longitudinal offset was 

large (Fig. 7(A), Fig. 7(B) and Fig. 8(A), Fig. 8(B)). However, the prediction errors of the 

master instrument holocellulose and lignin models established by the SWCSS and 

SWCSS-S/B methods when applied to the target instrument samples were reduced, and the 

predicted values were roughly distributed in a narrow range along the fitted straight line. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

He et al. (2022). “Near IR model of biomass,” BioResources 17(4), 6476-6489. 6486 

The offset was small, and most of the predicted values of the master instrument model 

corrected by the SWCSS-S/B method for the target were closer to the fitted straight line. 

This further indicates that the model prediction statistical error after the transfer of the 

SWCSS-S/B method was smaller, and the prediction effect of holocellulose was better than 

that of lignin. 

 

  
 

Fig. 7. Correlation diagram and distribution diagram of the measured and predicted values of the 
predicted concentration of holocellulose content 
 

  
 

Fig. 8. Correlation diagram and distribution diagram of the measured and predicted lignin content 
in the predicted concentration 

 

 

CONCLUSIONS 
 

1. The research showed that the SWCSS-S/B method achieved good results in the transfer 

process of the model of pulp wood holocellulose and lignin content between two 

different types of spectrometers. The model transfer effect of holocellulose content 

was better than that of lignin.  

2. The stable consistent wavelengths screened by the SWCSS method can effectively 

reduce the differences between these two spectral instruments, and then the systematic 

errors that still exist after the SWCSS correction can be further corrected by the S/B 

method, and the predictive power of the spectral analysis model will be significantly 

improved. 
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3. The model transfer process using the SWCSS-S/B method involves fewer wavelength 

variables, reduces the dimensionality of the spectral matrix, and greatly improves the 

transfer efficiency. 

4. Although the analysis object of this paper is only for the near infrared analysis model 

of holocellulose and lignin in pulp, the research methods and paths used are also 

instructive and applicable to other indicators of pulp materials, such as moisture and 

density, as well as to NIR analysis modeling in other industry sectors. 
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