
 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Jiang et al. (2023). “Non-destructive wood testing,” BioResources 18(2), 3620-3641.  3620 

 

Non-Destructive Testing of Mechanical Properties of 
Solid Wood Panel Based on Partial Least Squares 
Structural Equation Modeling Transfer Method 
 

Dapeng Jiang,a Yizhuo Zhang,a,* and Chen Jinhao b  

 
Calibration transfer between near infrared (NIR) spectrometers is a subtle 
issue in the chemometrics and process industry. Similar instruments may 
generate strongly different spectral responses, and regression models 
developed on a first NIR system can rarely be used with spectra collected 
by a second apparatus. In this work, two novel methods based on 
Structural Equation Modeling (SEM), called Enhanced Feature Extraction 
Approaches for factor analysis (EFEA-FA) and Enhanced Feature 
Extraction Approaches for spectral space transformation (EFEA-SST), 
were proposed to perform calibration transfer between NIR spectrometers. 
They were applied to a NIR nondestructive testing model for solid wood 
panels mechanical properties. Four different standardization algorithms 
were evaluated for transferring solid wood panels quality databases 
between a portable NIRS (InGaAs)-array spectrometer (NIRquest512) 
and a HSI Camera (SPECIM FX17). The results showed that EFEA-SST 
yielded the best model evaluation metrics (R2 and Root Mean Square Error 
of Prediction (RMSEP)) values for tensile strength (RMSEP=11.309, 
R2=0.865) parameters, while EFEA-FA gave the best fit for flexural 
strength (RMSEP=10.653, R2=0. 912). These results suggest the potential 
of two novel quality parameters prediction methods based on spectral 
databases transferred between diverse NIRS spectrometers. 
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INTRODUCTION 
 

The forest products industry utilizes near infrared spectroscopy (NIRS) for 

quantitative examination of solid wood panels, such as tensile strength and flexural strength. 

NIRS offers just the mean spectrum of a sample (Tuncer 2022), regardless of the scanned 

area of the sample. As a result of averaging the gathered spectra to produce a single 

spectrum, information regarding the spatial distribution of constituents inside the sample 

is lost. The development of NIR hyperspectral imaging (HSI), combines NIR spectroscopy 

with digital imaging (Lima et al. 2022; Yakubu et al. 2022). For each pixel in the imaging 

plane, hyperspectral pictures can be collected spanning the whole visible and NIR 

wavelength range of a material (Vidal and Pasquini 2021). Consequently, using this stack 

of wavelength images or spectral cube, the average intensity and local changes of the 

intensity pixels at each spectral image may be analyzed and used for pattern identification. 

However, expensive and specialized hardware is required to capture hyperspectral images 
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(Nakawajana et al. 2021; Tunny et al. 2022). In general, hyperspectrometers with 

somewhat higher resolution cost over a million dollars. To solve this problem, calibration 

transfer technology strikes a balance between price and resolution, and near-infrared 

spectrum transfer technology was used to transfer the calibration model from the high-

precision near-infrared spectrometer equipment platform in the laboratory to the low-

precision hyperspectral equipment (Wang et al. 2023). A high-precision detection model 

derived from a laboratory NIR spectrometer was transferred to an industrial-grade online 

HSI spectrometer to improve the model’s accuracy and reduce the overhead of the 

industrial pipeline. 

Several standardisation approaches address this crucial issue and permit the transfer 

of calibration models (X. Li et al. 2021). There are methods for resolving transfer problems 

that do not require standardization (multiplicative scatter correction (MSC), orthogonal 

signal correction (OSC), etc.) (Shan et al. 2020). However, when the issue is not caused by 

spectral intensity variations but rather by wavelength shifts, various standardization 

approaches might be utilized. According to Qiao et al. (2021), a calibration transfer can be 

performed in a few ways: a priori correction involves correcting the spectra prior to 

applying the existing calibration model; model correction involves adapting the calibration 

model; and a posteriori correction involves correcting the predictions of the existing 

calibration model. Some modern transfer techniques are based on factor analysis, which 

separates spectral information related elements from noise to enhance transfer outcomes. 

In the framework of transfer between instruments, a priori correction and model 

correction are based on multivariate spectrum correction. In the first mode, secondary 

spectra are matched to primary spectra and entered the existing model. In the second mode, 

the spectra of the primary spectra database are adjusted to match those of the secondary 

database, and the model is recalibrated. Spectra multivariate correction may use a large 

number of techniques, such as direct standardisation (DS) (Tian et al. 2022), or piecewise 

direct standardisation (PDS) (Sun et al. 2021; Chen et al. 2022). In a posteriori correction, 

existing primary spectra are applied to secondary spectra whose responses are known. After 

calibrating a model of the prediction error, its inverse is used to make future predictions. 

Typically, a simple univariate technique, such as bias/slope correction (BSC) of the 

projected values (Salguero-Chaparro et al. 2013), is used to implement this model. 

Factor analysis (FA) is a highly effective method for establishing relationships 

between two sets of measurements (spectrum of two instruments). Transfer methods based 

on factor analysis, such as the Spectral Space Transformation algorithm (SST) (L. Li et al. 

2022; Du et al. 2011), the alternating trilinear decomposition (ATLD) algorithm (Yap et 

al. 2022), the Principal Component Analysis (PCA) algorithm (Rehman et al. 2022), and 

the Canonical Correlation Analysis (CCA) algorithm (Fan et al. 2008; Zheng et al. 2014), 

have been widely applied and are frequently compared to traditional methods. FA, in 

contrast to PCR or PLS (Mendoza et al. 2018), utilizes correlation rather than covariance. 

A substantial covariance between two instruments NIR spectrum is not always indicative 

of a significant connection. A pair of those spectrum may have perfect correlation but low 

covariance. In such instances, correlation (FA) should be utilized rather than covariance 

(PCR or PLS). 

PCA algorithm, CCA algorithm, and ATLD algorithm are statistically classified as 

exploratory factor analysis (EFA) approaches. In addition, the succession of peaks and 

troughs that show in an NIR spectrum represent the sample’s molecular vibrations. The 

relationship between molecular overtones and combined bands in the NIR spectrum and 

the stretching vibrations of hydrocarbon bonds in solid wood panels is linear. By 
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comparing the NIR spectra of wood and pure chemical components such as lignin, 

cellulose, extractives, and xylan, researchers estimate the contribution of the chemical 

components to the mechanical performance of wood, in accordance with the premise of 

Confirmatory Factor Analysis (CFA) (Dash and Paul 2021). CFA assesses a priori 

hypotheses derived from earlier research on the link between the mechanical characteristics 

of solid wood panels and conducts validated testing on proposed models. 

Lignin content and the lignin and extractives are strongly correlated with the 

absorbances near 1668 nm and 1684 nm (Horvath et al. 2011). The microfibril angle of 

wood samples were correlated with the absorbances near 1,150 nm. The absorbance peaks 

between 1075 and 1250 nm had been identified to be related to the lignin content 

(Watanabe et al. 2012). The band at 1143 nm belonged to aromatic groups, and the 

absorbances near 1130 nm were closely related to the lignin content after 2-d preprocess. 

Fujimoto et al. (2012) believed that the absorbances near 1428.5 nm were highly correlated 

with cellulose, the bands at 1366 nm, 1400 nm , and 1428 nm were associated with the 

cellulose and the moisture content, the band at 1396.6 nm was highly correlated with 

freewater, and the band at 1366.1 nm was highly correlated with freewater. The bands are 

highly correlated with bound water. Therefore, it is feasible to hypothesize, in advance, the 

number of factors affected the mechanical properties of wood, whether these factors are 

correlated, and which band in NIR load onto and reflect which factors, according to the 

above literature. 

CFA is utilized by Partial Least Squares Structural Equation Modeling (PLS-SEM) 

(Sarstedt et al. 2022; Smith et al. 2022) to evaluate the measurement model. It differs from 

EFA in that it evaluates using empirical data with existing factor specification. For CFA, 

model fit is examined to validate the measurement. After the model is fitted, the route 

models between the latent variables are evaluated (Jonckere and Rosseel 2022). The PLS-

SEM approach is intriguing because it allows them to estimate complicated models with 

numerous constructs, indicator variables, and structural routes without putting 

distributional assumptions on the data (Hair et al. 2020). PLS-SEM is a causal-predictive 

approach to SEM that stresses prediction in estimating statistical models, the structures of 

which are aimed to give causal explanations (Hult et al. 2021). Thus, the method avoids 

the seeming conflict between explanation and prediction, which is normally stressed in 

academic research. In addition, user-friendly software packages are available, such as PLS-

Graph (Tenenhaus and Hanafi 2010) and SmartPLS (Sarstedt and Cheah 2019), that need 

minimum technical knowledge of the method.  

In addition to introducing the CFA theory into the NIR transfer model, the purpose 

of this study is to present a unified calibration transfer framework based on the PLS-SEM 

model. Based on this framework, two existing algorithms, CCA and SST, were unified into 

a new process, named EFEA-FA and EFEA-SST. This work introduces Structural 

Equation Modeling in statistics and improves model transfer methods from a novel 

perspective. The band is selected according to the fundamentals of NIR spectroscopy. 

Using EFEA-FA and EFEA-SST for the prediction of the Solid Wood Panels mechanical 

character could reach great performance over both source and target domain. This work 

determined the number of factors and the relationship between factors and spectral bands. 

These components were chosen in accordance with knowledge from previous research as 

well as the PLS-SEM model’s unified structure. The goal was to improve the 

interpretability of the transfer model. 
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EXPERIMENTAL 
 

Materials 
Logs went through the initial wood working process, for instance peeling or 

debarking. Next, wood was cut and processed into solid wood panels. A set of 90 Sheets 

of solid wood panels samples were processed. In the lab, the solid wood boards were kept 

at 5 °C and 90% relative humidity. Before spectroscopic measurements, the samples were 

equilibrated to room temperature (25 °C). 

Spectra were collected from samples in reflectance mode (log 1/R) using two 

NIRS-instruments, and 2 batches of NIR samples were established: (1) portable NIRS 

(InGaAs)-array spectrometer (NIRquest512, Orlando, FL, USA) and (2) HSI Camera 

(SPECIM FX17, Oulu, Finland). The Smart PLS (3.2.8) statistical tool was used to 

examine the data through partial least square equation modeling (PLS-SEM), and 

MATLAB, a proprietary multi-paradigm programming language and numeric computing 

environment developed by MathWorks, was used to propose a novel model to achieve 

calibration transfer. 

Figure 1 illustrates the HSI camera. A line-scan mode SPECIM FX17 provided 

with a transport module was used to measure all spectra in the scanning range of 900 to 

1700 nm, at 8 nm intervals. A rectangular natural product cell with a window surface of 

94.9 cm2 was used. Each spectrum was the average of 32 scans. Spectra were captured 

using the CameraLink and GigE Vision Camera Interface in conjunction with the LUMO 

Software Development Kit (LUMO Development Kit, Oulu, Finland). 

 

 
Fig. 1. SPECIM FX17 Camera 

 

Figure 2 shows the NIRS Spectrometer. The second instrument was a NIRQuest512 

spectrometer based on an array detector. The spectrometer with an InGaAs array work in 

the range from 900 to 1700 nm, with a spectral wavelength interval of 3.1 nm. The distance 

from the sample surface to the sensing head was approximately 13 mm. With an integration 

time of 5 s, 10 scans were averaged for each measurement. A total of 30 spectra of each 

sample were acquired, and the mean spectrum was used for data processing. All spectra 

were recorded using SpectraSuite 2.0 (Quadrangle Blvd, Orlando, FL, USA). 

 

Hyperspectral Imaging Cameras

PTFE

Conveyer Table

Electric Motor

Solid Wood Panel

Computer



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Jiang et al. (2023). “Non-destructive wood testing,” BioResources 18(2), 3620-3641.  3624 

This study focused on the restoration and maintenance of ancient wooden structures, 

specifically the ancient bucket arch structures found in China. In analyzing these structures, 

it is equally important to consider both their ultimate strength index and their stiffness 

index. The study focused on the wood strength both under flexural and tension stresses.  

The mechanical testing material used in this study was birch wood grown in Northeast 

China, which was collected from the Chonghe Forest Farm of the Forestry Bureau of 

Wuchang City, Heilongjiang Province. The forest farm is characterized by continuous 

mountains, criss-crossing terrain, high elevation in the east and low elevation in the west, 

a dense river network, and abundant water sources. The geographical location and 

environmental conditions are detailed in Table 1. 

  

Table 1. Climatic Conditions of Log Collection Areas 

Latitude Longitude 
Average 
Altitude 

(m) 

Max. 
Temp. 
(°C) 

Minimum 
Temp. 
(°C) 

Annual 
Average 
Temp. 
(°C) 

Annual 
Precipitation 

(mm) 

Annual 
Evaporation 

(mm) 

44°37′~44°47′N 127°35′~127°55′E 350 35 -34 2.3 750 340 

 

Within the birch forest, three groups of sample trees were selected based on their 

elevation, with each group containing four trees for a total of 12 sample trees. The trees 

were 20 years old, with a height of 12 to 14 m and a diameter at breast height of 16 to 17 

cm. After marking the growth direction of each tree, the sample logs were felled, and the 

logs were cut at chest height (about 1.3 m above the ground). To highlight the differences 

in mechanical properties of the test materials, interval sampling was adopted during cutting 

to account for the distribution characteristics of mechanical properties in the vertical 

direction. Specifically, wood sections with a length of 1 m were cut for processing the 

bending test materials, while wood sections with a length of 2 m were cut for processing 

the tensile test materials, as shown in Fig. 2. 

 
Fig. 2. Schematic diagram of wood cutting process 

 

After air-drying, the wood section was sawn, excluding the pithwood and without 

distinguishing between the heartwood and sapwood. First, rough strips for bending 

resistance were made, and then bending strength values of samples of 300 mm × 20 mm × 

20 mm were prepared in accordance with the Chinese National Standard (GB/T 1928-

2009). Out of the total samples, 90 flawless samples were selected. These were numbered 

 1m 2m 1m 2m 1m
1.3m
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from 1 to 90, and placed in a drying oven to reduce moisture content to 12%. To prevent 

moisture from affecting the samples, each one was placed in an airtight plastic bag. 

Reference values for flexural strength and tensile strength in solid wood panels samples 

were determined using official analysis methods. On solid wood panel samples, flexural 

strength was determined using the method of testing in bending strength of wood procedure 

(GB 1936.1-2009), which was proposed by the Standardization Administration of China 

(SAC, 2003). The tensile strength parallel to grain of wood (GB/T 1938.1-2009) was used 

to determine tensile strength.  

 

 
 

Fig. 3. NIR Quest 512 Spectrometer 
 

Source instrument and target instrument matrices are used to denote the primary 

and secondary spectra. After preprocessing spectral data, 90 samples were obtained from 

each instrument. The source domain dataset Xsource (90×512), target domain dataset Xtarget 

(90×224), and Y (90×2), were divided into three groups: transfer (Xt, Yt), calibration (Xc, 

Yc) and prediction (Xp, Yp), in the following proportions: 60% (54 samples), 10% (9 

samples) and 30% (27 samples), respectively. The transfer set, calibration set, and 

prediction set of source spectra are denoted by Xst, Xsc, and Xsp, while the analogous sets 

of target spectra are denoted by Xtt, Xtc, and Xtp. The parameter Xtnew represents the spectra 

corrected from Xpt by calibration transfer, whereas ys and yt represent the sample 

concentrations that correspond to the source and target spectra, respectively. In this article, 

the values of ys and yt are the same.  

 

Calibration Transfer Based on CCA 
 

Xst and Xtt can be executed by CCA:  

         (1) 

         (2) 

where Tst and Ttt stand for the canonical weights, while Ps and Pt indicate the corresponding 

canonical scores of Xst and Xtt, respectively. The transfer matrix T was computed as follows,  

1 t sF P P+=           (3) 

2 st tF X P+=           (4) 
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2 1 stF F F T=           (5) 

where superscript “+” represents the pseudo-inverse, and both F1 and F2 are interim 

matrices for calculating F. Next, the Xtnew corrected from Xsp can be obtained by right 

multiplying F. 

tnew spX F X=          (6) 

Finally, substituting Bnew into the calibration model of Ac can yield the predicted 

values directly.  

 

EFEA-FA Modeling 
Generalizing: The PLS-SEM modeling and relationship with the wood biological function 

PLS-SEM is a statistical technique that bears some resemblance to principal 

components analysis; however, instead of finding hyper-planes of maximum variance 

between the response and independent variables, it includes a method for assessing 

measurement model quality known as CFA. Researchers have began referring to the 

measurement model assessment stage in PLS-SEM as CCA in recent years (Henseler et al. 

2014; Schuberth et al. 2018). CCA is a methodical procedure for systematically validating 

measurement models in PLS-SEM. 

When conducting CCA with formative composite measurement models, the 

formative composite measurement models are linear combinations of the construct’s 

indicators. The indicators are deemed causal and do not always co-vary, pointing from the 

measured variables to the composite concept. Therefore, the internal consistency principles 

underlying reflective measurement models cannot be applied to formative measurement 

models. 

Due to its oriented fibers, wood has been viewed as an anisotropic material. The 

tensile strength of wood has a high correlation with the fiber angle, whereas the tensile 

strength of wood along the grain direction is more dependent on the fiber angle and the 

strength of bundles of molecular chains that combine in groups to form the cellulose fibres; 

the flexural strength of wood is largely a function of lignin. Lignin, a crucial structural 

component in the supporting tissues of most plants, is a reliable predictor of flexural 

strength and stiffness. 

When the SEM is based on secondary data, a reflective or formative secondary 

measure of the same construct should be identified and used as a proxy variable for 

assessing the convergent validity of formative constructs. It is possible to identify 

acceptable endogenous reflectively assessed items for use as proxy variables in convergent 

validity testing by analyzing established scales from prior research. We chose three 

variables for this study: lignocellulose, moisture content, and lignin. This study selected as 

observation variables from the 900 nm to 1700 nm spectral bands 1668 nm to 1684 nm, 

1075 nm to 1250 nm, 1070 nm to 1150 nm, 1366 nm, 1400 nm, and 1428 nm, based on 

previous research on the link between NIR bands and wood strength. Utilizing three 

variables as latent variable factors. The path dependence between latent variable factors 

(lignin, etc.) and observable variables (spectral bands) is established based on past research 

findings, and a PLS-SEM structural equation model is created.  

 

EFEA-FA modeling steps 

The EFEA-FA model is a new regression model designed by the PLS-SEM 

structural. As a statistical method that bears some resemblance to principal components 

analysis, rather than finding hyper-planes of maximum variance between the Mechanical 
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properties of wood and the near infrared wavelength spectrum, PLS-SEM computes latent 

variables from linear combinations of sets of specific wavelengths that correspond to 

previous research results to represent the Concept of wood Biological Functions. Based on 

the PLS-SEM calculated factors or composites, we developed the NIR spectral factor 

analysis transfer model. 

The measuring model and the structural model make up SEM. A measurement 

model measures latent variables or composite variables, but a structural model examines 

all conceivable dependencies using path analysis. This is how the measurement model is 

expressed:  

yy  =  +                  (7) 

x x =  +                  (8) 

Where y is the dependent variable, for this study, y is the measured value of 

Mechanical properties for wood; Where x is the independent variable, for this study, x is 

the measured value of NIR for wood; y  and x  are PLS-SEM loadings matrices;  and 

  are errors;   and   are PLS-SEM factors; the structural model is expressed as:  

B   = + +         (9) 

In Eq. 9, B  and   are relationship matrices;   is residual matrix. According to 

approximate estimation and iterative optimization of EM method, the optimal solution of 

PLS-SEM relationship matrix and factors is obtained. The simplified flow chart of the 

model is as follows:  

 

 

 

Fig. 4. PLS-SEM Framework Flowchart 
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Step 1: Establishing the PLS-SEM path model of wood mechanical properties. 

Step 2: Iterating PLS-SEM model to optimize the relationship matrix, latent variables and 

parameters, the algorithm including the apparent variables normalized, the loading matrix 

approximation estimation, the relationship matrix approximation estimation and weight 

estimation.  

The apparent variables normalized 

The NIR spectral band and the mechanical properties of solid wood panels are 

normalized:  

( ) ( ) ( ) 0tt stE X E X E y= = =        (10) 

The loading matrix approximation estimation 

Estimated Loading Matrix:  
1 1= ( )t t t

i i ij ijf w x + +          (11) 
1 1 *= ( )t t t

i i ij ijg w y + +          (12) 

Minimize the variance of i  and i , let: ( )= ( ) 1i iVar Var  =  

The relationship matrix approximation estimation 

Approximate Estimation of Relationship Matrix 

( )1 * 1 1 1 1 1t t t t t t

i i ia a ia af    + + + + + += +       (13) 

( )1 * 1 * 1 1 * 1 1t t t t t t

i i ia a ia ag    + + + + + += +       (14) 

1t

ia +
, 

1t

ia
+

, 
* 1t

ia
+

 and 
* 1t

ia
+

 is factor relationship matrix： 

Minimize the variance of i  and i , let: ( )= ( ) 1i iVar Var  =  

Weight estimation 

Iterative results of load matrix and score matrix for PLS-SEM 
* 1 1 1

,

t t t

ij ij i y ijy w  + + += +         (15) 

( ) ( )

11

121 1 1 1 1 1 1

1 1 1 ,1 11 12 1 ,1

1

, ,t t t t t t t

j j n

n

x

x
w x w w w

x

   + + + + + + +

 
 
 = + = +
 
 
 

    (16) 

The augmented matrix between primary and secondary is combX , The above 

formula is transformed into:  

( ) ( )2 1 11

1 ,

11

+1 1 1

11 12 1

1

1= , ,t

n

t tt t

comb n

x

x
X w w w

x

 + ++ + +

 
 
 = −
 
 
 

    (17) 

The loading matrices Pt and Ps are expressed as: 

( ) ( )
+

1 1 1

11 12 1, , ,t t t

s ntP P w w w+ + +=        (18) 

The score matrix Ttt of the host spectrum and the score matrix Tst of the secondary 

spectrum are expressed as: 

( ) ( )1 ,1= , =
T

comb tt stT T T  −        (19) 

Step 3: Calculate the conversion matrix T  between stT  and ttT  and transfer the 
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spectral matrix Xsp from the machine to Xtnew. The formula is as follows: 

1 t sF P P+=           (20) 

2 st tF X P+=           (21) 

2 1 stF F F T=           (22) 

Here, superscript “+” represents the pseudo-inverse, and both F1 and F2 are interim 

matrices for calculating F. Next, the Xtnew corrected from Xsp can be obtained by right 

multiplying F. 

tnew spX F X=          (23) 

Finally, substituting Xtnew into the calibration model can yield the predicted values 

directly.  

In summary, the algorithm block diagram of EFEA-FA is shown in Fig. 5:  

 

Fig. 5. EFEA-FA Algorithm 
 
Calibration Transfer Based on SST 

Assume the rows of the spectral matrices Xtt and Xst are the corresponding spectra 

of the same subset of standardization samples measured on the primary and secondary 

instruments (or under the initial calibration and the modified test conditions), respectively. 

Let the singular value decomposition of Xcomb as follows: 

 , [ , ]T T

comb tt st t sX X X TP T P P= = =       (24) 

Here, the scoring matrix is T , The primary load matrix is tP , The secondary load 

matrix is sP . The relationship between the primary matrix and the secondary matrix is:  

= + ( ) ( )T T T

tt st st s t sX X X P P P+ −        (25) 
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Arrange above formula, the tanslation matrix F can be calculated as follows: 

( ) ( )T T T

s t sF I P P P+= + −        (26) 

tanslate the secondary spectrum Xsp to the primary spectrum Xtnew. the primary 

spectrum Xtnew can be obtained by:  

        (27) 

 
EFEA-SST Modeling 

The second model in our paper is EFEA-SST used for source domain data and 

target domain data respectively. As well as EFEA-FA, the EFEA-SST also implement 

calibration transfer based on the PLS-SEM framework. The specific algorithm flow is as 

follows:  

Step 1: Establishing the PLS-SEM path model of wood mechanical properties.  

Step 2: iterating PLS-SEM model to optimize the relationship matrix, latent variables and 

parameters, the algorithm including the apparent variables normalized, the loading matrix 

approximation estimation, the relationship matrix approximation estimation and weight 

estimation.  

The apparent variables normalized 

The NIR spectral band and the mechanical properties of solid wood panels are 

normalized:  

( ) ( ) ( ) 0tt stE X E X E y= = =        (28) 

The loading matrix approximation estimation 

Estimated Loading Matrix:  
1 1= ( )t t t

i i ij ijf w x + +          (29) 
1 1 *= ( )t t t

i i ij ijg w y + +          (30) 

Minimize the variance of i  and i , let: ( )= ( ) 1i iVar Var  =  

The relationship matrix approximation estimation 

Approximate Estimation of Relationship Matrix 

( )1 * 1 1 1 1 1t t t t t t

i i ia a ia af    + + + + + += +       (31) 

( )1 * 1 * 1 1 * 1 1t t t t t t

i i ia a ia ag    + + + + + += +       (32) 

1t

ia +
, 

1t

ia
+

, 
* 1t

ia
+

 and 
* 1t

ia
+

 is factor relationship matrix： 

Minimize the variance of i  and i , let: ( )= ( ) 1i iVar Var  =  

Weight estimation 

Iterative results of load matrix and score matrix for PLS-SEM 
* 1 1 1

,

t t t

ij ij i y ijy w  + + += +         (33) 
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The augmented matrix between primary and secondary is combX , The above 

formula is transformed into:  
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 + ++ + +

 
 
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    (35) 

The loading matrices Pt and Ps are expressed as: 

( ) ( )
+

1 1 1

11 12 1, , ,t t t

s ntP P w w w+ + +=        (36) 

The score matrix Ttt of the host spectrum and the score matrix Tst of the secondary 

spectrum are expressed as: 

( ) ( )1 ,1= , =
T

comb tt stT T T  −        (37) 

Step 3: Calculate the transformation matrix F. Next, the Xtnew corrected from Xsp 

can be obtained by right multiplying F. 

       (38) 

        (39) 

In summary, the algorithm block diagram of EFEA-FA is shown in Fig. 6: 

 

Fig. 6. EFEA- SST Algorithm 
 
 
RESULTS AND DISCUSSION 
 
NIR Spectral Preprocessing Results 

The raw spectra from the original database as measured by the NIRquest512 (Fig. 

2) and the SPECIM FX17 (Fig. 1) spectrometers are depicted in Fig. 7 and Fig. 8, 

respectively. Some major bands were observed on both figures. It is important that the light 

scattering has a significant impact on the spectra collected by both instruments. In fact, a 

significant proportion of photons that are not caught by the sensors and are so assumed to 

be absorbed are multiplicative scattered. After the log transform, this is additive scattered.  
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Fig. 7. Unprocessed primary spectra 

 
 
Fig. 8. Unprocessed secondary spectra 
 

In this experiment, we used two classical spectrum preprocessing methods, 

standard normal variate (SNV) and Savitzky Golay Filter (S-G), to identify the spectral 

preprocessing approach with the greatest generalization capability. For each spectrum 

preprocessing approach, we first applied the identical spectral preprocessing to the source 

domain and the target domain, then used the processed source domain to create the 

calibration transfer models and the processed source domain and target domain to evaluate 

the performance. As depicted in Figs. 9-12, the spectra of each dataset were drawn 

following SNV-SG spectral preprocessing. Compared to Figs. 7, 8, The spectral gaps 

between the datasets were substantially decreased, and the spectral signal was noticeably 

smoothed. 
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Fig. 9. Primary spectra pre-processed using the 
SNV method 

 
Fig. 10. Primary spectra pre-processed using the 
SNV-SG method 

 
Fig. 11. Secondary spectra pre-processed using 
the SNV method 

 
Fig. 12. Secondary spectra pre-processed using the 
SNV-SG method 

 

PLS-SEM Modeling Process 
Figures 13 and 14 depict statistically significant relationships between 

lignocellulose, lignin, moisture content and mechanical characteristics, with roundel 

symbols representing the pertinent latent variables. The inner model displayed non-

normalized path coefficients, then the outer model displayed rescaled outer weights. 

Numbers along paths correspond to the weighted correlation coefficients that represent the 

strength of the relationship between two connected variables; overall impacts can be 

determined by multiplying path coefficients along one or more segments and summing 

across all feasible paths.  

PLS-SEM was used to examine the scale’s validity and reliability. The composite 

reliability (CR) and outer loading values were used to evaluate the scale’s dependability. 

The average variance extracted (AVE) values were used to evaluate the convergent validity 

of this scale. Convergent validity assesses the degree of correlation between two measures 

of the same notion. The acceptance criteria for the reported values for the scale’s validity 

and dependability are listed in Table 1. Values for composite reliability, which measure 

how well the construct indicators reveal the latent variable, should be higher than 0.70. 

More frequently, CR is expressed as follows:  
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        (40) 

The AVE loading value higher than 0.50 was advised to justify the use of the construct as 

it measures the variance captured by the indicators relative to measurement error. More 

frequently, AVE is written as follows:  

( )

( )

2

2

i

i

i i

i i

AVE
e




=

+



 
       (41) 

 
Fig. 13. Structural Equation path before optimization 
 
 

 
Fig. 14. Structural Equation path after optimization 
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The unoptimized fully connected structural equation is depicted in Fig. 13. Most of 

the composite reliability values in this structural equation model less than 0.8 and an AVE 

index less than 0.5. The structural equation model was poor quality. Spectral bands with 

poor SEM contribution values should be deleted, and the structural equation path should 

be made simpler. The optimized structural equation model is shown in Fig. 14. At this point, 

all the composite reliability values ranged from 0.774 to 0.825, indicating good internal 

consistency reliability; the AVEs ranged from 0.632 to 0.703, which were all within the 

recommended range as presented in Table 1. Therefore, the entire latent variables fulfilled 

the threshold value and met the standard recommended for convergent validity. 

 

Table 1. Results of Structural Equation Index: Unoptimized vs Optimized 

 Unoptimized Optimized 

 Composite Reliability AVE Composite Reliability AVE 

Latent Variable 1 0.685 0.362 0.774 0.632 

Latent Variable 2 0.747 0.438 0.825 0.703 

Latent Variable 3 0.617 0.289 0.81 0.681 

Latent Variable 4 0.728 0.476 0.787 0.649 

Latent Variable 5 0.705 0.42 0.795 0.664 

Latent Variable 6 0.803 0.672 0.803 0.671 

 

The degree of correlation between the formative items and the indicators is known 

as multicollinearity. reflection indicators are frequently seen as interchangeable, which 

makes high correlations expected. However, multicollinearity issues are brought on by 

significant correlations between formative indicators. More frequently, VIF is written as: 

2

1

1
VIF

R
=

−          (42) 

A multiple regression model is used to calculate formative construct scores, where the 

formative indicators are the independent variables and the construct scores are the 

dependent variable. The variance inflation factor (VIF), which is present in most statistical 

software, is investigated to ascertain whether multicollinearity is a problem. The VIF 

values of each factor are shown in Table 2, and multicollinearity is unlikely to be concerned 

if the VIF is 3.0 or less.  

 

Table 2. VIF value of Each Factor 

Factor VIF 

OCEAN11 1.098 

OCEAN12 1.098 

OCEAN2 1.042 

OCEAN4 1.117 

OCEAN6 1.151 

OCEAN7 1.151 

SPECIM1 1.22 

SPECIM10 1.134 

SPECIM2 1.22 

SPECIM6 1.145 

SPECIM7 1.145 

SPECIM9 1.134 

y 1 

OCEAN1 1.077 
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Result of Wood Tensile Strength Transfer Model 
Following SNV-SG pre-processing, transferable models based on the PLS-SEM 

framework from NIR to online HSI were constructed by employing several types of 

calibration transfer method for the prediction of the Solid Wood Panels Tensile Strength, 

and CCA and SST method were compared. The NIR-HSI spectra of the 9 calibration 

samples were subjected to each standardization procedure for spectrum correction. The 

prediction accuracy in terms of R2 and RMSE was used to assess the effectiveness of the 

calibration transfer. 

 

 
Fig. 15. Result of tensile strength testing 
using the SST calibration transfer model 

 
Fig. 16. Result of tensile strength testing 
using the CCA calibration transfer model 

 
Fig. 17. Result of tensile strength testing 
using the EFEA-SST calibration transfer 
model 

 
Fig. 18. Result of tensile strength testing 
using the EFEA-FA calibration transfer 
model 

 

Figures 15 through 18 and Table 3 depict the results. Different types of calibration 

transfer methods have a major impact on performance. For example, by optimizing the 

CCA methods with the PLS-SEM framework, the correlation coefficient was enhanced 

from 0.792 to 0.813. The correlation coefficient was increased from 0.765 to 0.865 by 

optimizing the SST approaches with this framework. When compared to the results of the 

EFEA-FA approach of validation samples (Rp=0.813 and RMSEP=16.646, the indicator of 

EFEA-SST standardization (Rp=0.865 and RMSEP=11.309) had the best Flexural Strength 

prediction accuracy.  
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Table 3. Calibration Transfer Model Prediction Results of Timber Tensile 
Strength 

 
Training Set Prediction Set 

Rc RMSEC Rp RMSEP 

SST 0.859 12.809 0.765 21.790 

CCA 0.865 11.404 0.792 24.810 

EFEA-SST 0.958 3.337 0.865 11.309 

EFEA-FA 0.960 3.316 0.813 16.646 

 
Result of Wood Flexural Strength Transfer Model 

Similar to how the tensile model is built, the spectral transfer model for wood 

bending is built. After SNV-SG pre-processing, transferable models based on the PLS-

SEM framework from NIR to online HSI were built using a variety of calibration transfer 

methods to forecast flexural strength of Solid Wood Panels, and the CCA and SST methods 

were contrasted. 

 
Fig. 19. Result of flexural strength testing 
using the SST calibration transfer model 

 
Fig. 20. Result of flexural strength testing 
using the CCA calibration transfer model 

 
Fig. 21. Result of flexural strength testing 
using the EFEA-SST calibration transfer 
model 

 
Fig. 22. Result of flexural strength testing 
using the EFEA-FA calibration transfer 
model 

 

The outcomes are displayed in Figs. 19 through 22 and Table 4. The performance 

of various calibration transfer methods varies significantly. In particular, the correlation 

coefficient of the CCA approaches was improved from 0.795 to 0.912 with the application 

of the PLS-SEM framework. The SST techniques’ correlation coefficient was improved 

using this framework, going from 0.778 to 0.843. When compared to the results obtained 
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using the EFEA-SST technique of validation samples (Rp=0.843 and RMSEP =15.178), 

the EFEA-FA standardization approach produced an equivalent Flexural Strength 

prediction accuracy of Rp =0.912 and RMSEP =10.653.  

 

Table 4. Calibration Transfer Model Prediction Results of Timber Tensile 
Strength 

 
Training Set Prediction Set 

Rc RMSEC Rp RMSEP 

SST 0.869 11.607 0.778 22.024 

CCA 0.872 11.985 0.795 25.847 

EFEA-SST 0.964 2.792 0.843 15.178 

EFEA-FA 0.939 4.752 0.912 10.653 

 

 
CONCLUSIONS 
 
1. The current NIRS calibrations model predicting flexural and tensile strength in solid 

wood panels was successfully transferred using all four transfer methods (EFEA-FA, 

EFEA-SST, CCA, and SST). The innovative method built on the PLS-SEM framework 

transfer demonstrated the best calibration transfer performance. 

2. The best calibration transfer performance was found when the EFEA-FA procedure 

was applied predicting flexural strength. Note that the RMSEP value after EFEA-FA 

standardization was significantly lower (10.653) than the error obtained in the original 

calibration (RMSEP=25.847). Additionally, the R2 values increased from 0.795 to 

0.912. 

3. In the same way, the application of EFEA-SST algorithm allowed to obtain the best 

prediction results for the Tensile Strength property. The RMSEP value obtained (Table 

3) indicated that the prediction of Tensile Strength was greatly improved using EFEA-

SST transferred rather than untransferred models. The prediction performed gave a 

RMSEP of 11.309, and a R2 of 0.865. 
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