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Flexible functional composites have great potential for a variety of 
applications in the fields of athlete health monitoring and auxiliary training. 
There are a few recent reports on various functional composites such as 
graphene-based composites, MXene-based composites, and polymer-
based composites, etc. However, the applications of flexible functional 
composites for athlete health monitoring and auxiliary training have yet to 
be widely reviewed. This mini-review summarizes these three types of 
functional composites for the applications of athlete health monitoring and 
auxiliary training. The synthetic methods, structures, and properties of 
functional composites are reviewed via some typical examples. The 
authors focus on the properties of functional composites as sensors for 
health-monitoring. Moreover, future development directions are suggested 
based on the authors’ knowledge. This review article demonstrates that 
these flexible functional composites can display excellent properties and 
promising potential for applications in athlete health monitoring and 
auxiliary training.  
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INTRODUCTION 
 

 Recently, health monitoring is becoming extremely popular due to the real-time 

transmission of signals from individuals to medical institutions (Wang 2022). Health 

monitoring is the main way to obtain health-related information, which is of great 

significance for the early detection and treatment of related diseases. Athlete sports 

monitoring and data collection can effectively understand an athlete’s health status, 

strengthen physical fitness, and improve competitive fitness level (Brancaccio et al. 2007; 

Kellmann 2010; Holzer et al. 2022). In recent decades, health monitoring has been widely 

used to collect athletes’ medical information. For example, high-level professional athletes 

are monitored by a global positioning system (GPS) and accelerometer. The sensors can 
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be used to collect heart rate, speed, strength, rhythm, distance, time, and provide real-time 

feedback to athletes, so that they can track and adjust their exercise level. The jump monitor, 

a wearable device launched by Vert Company, is small and can be easily installed at the 

waist of athletes (Manor et al. 2020; Damji et al. 2021; Piatti et al. 2021). It can monitor 

the height and number of jumps of an athlete in real time, as well as the amount of exercise 

to effectively prevent athletes from being injured. However, the realization of athlete health 

monitoring and auxiliary training will depend on the development of flexible functional 

materials, and flexible functional composites are promising candidates in these fields 

(Diamanti and Soutis 2010; Kinet et al. 2014). There are a few reports on various functional 

composites such as graphene-based composites (Cheng et al. 2015; Liu et al. 2016), 

MXene-based composites (Lei et al. 2019; Pu et al. 2019), and polymer-based composites 

(Ratna and Karger-Kocsis 2008; Amjadi et al. 2016). More recently, Su et al. (2022) 

reviewed the vital-sign and physiological-signal monitoring applications of flexible 

electronics, photoelectronics, and their integrated wearable devices. However, the 

applications of flexible functional composites for athlete health monitoring and auxiliary 

training have not yet been widely reviewed.  

Herein, this mini-review summarizes these three types of flexible functional 

composites for the applications of athlete health monitoring and auxiliary training. The 

synthetic methods, structures, and properties of flexible functional composites were 

reviewed via some typical examples. Future research directions are suggested based on the 

authors’ knowledge. These flexible functional composites will have promising applications 

potential in athlete health monitoring and auxiliary training.   

 
 
GRAPHENE-BASED COMPOSITE FOR MOTION DETECTION 
APPLICATIONS 
 
 Novoselov et al. (2004) first separated graphene from graphite by micromechanical 

stripping. Graphene displays good optical, electrical, and mechanical properties, and it has 

wide application in energy, biomedicine, and drug delivery sectors (Stankovich et al. 2006; 

Castro Neto et al. 2009; Geim 2009). Graphene is also an ideal material for an 

electrochemical biosensor (Unnikrishnan et al. 2012). Meanwhile, the graphene sensor has 

good sensitivity in detecting dopamine and glucose in medicine (Thanh et al. 2016). The 

gold nanoparticle-anchored nitrogen-doped graphene nanohybrid modified indium-doped 

tin oxide electrode was obtained by placing gold nanoparticle-anchored nitrogen-doped 

graphene onto an indium-doped tin oxide-conducting glass substrate, which was used as 

the glucose sensor by using alkalized human serum samples. Graphene-based composites 

have also been developed for motion detection. For example, Jeong et al. (2015) fabricated 

the graphene foam/polydimethylsiloxane (PDMS) strain sensor with three-dimensional 

(3D) structure and percolation network as a health monitoring device. The strain sensor has 

sensitivity with a gauge factor (GF) of 15 to 29, stretchability over 70%, and durability 

over 10,000 stretch-release cycles. The strain sensor detected the elbows and fingers 

bending, and the pulse of the radial artery. Then, the graphene-paper pressure sensor with 

the optimization sensitivity and working range was reported for health monitoring and 

motion detection in the range of 0 to 20 kPa (Tao et al. 2017). All pulse detection, 

respiratory detection, voice recognition, and intense motion detections could be completed 
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using this graphene-paper pressure sensor. After that, Song et al. (2018) reported a Janus 

graphene film pressure sensor with a wide sensing range, fast response time, and good 

stability for monitoring vital signs and cardiovascular assessment. The sensor monitors the 

vital signs of human body motion, breathing, and arterial pulse. Clearly, graphene-based 

composites have promising applications for motion detection.  

Silver nanowires have excellent conductivity, light transmittance, bending 

resistance, and flexibility, which have applications as flexible and bendable LED display 

and touch screen. Chen et al. (2016) developed a crack-based silver nanowires/graphene 

strain sensor for electronic skins and health monitoring. The composites were pre-stretched 

at first to develop crack morphologies on the surface and then cut into rectangle strips (3 

cm × 5 mm), attaching two copper wires to the two ends of the strip by conductive silver 

paste. A crack-based stain sensor was thus achieved with high GF, strain resolution, and 

working stability. The silver nanoparticles-bridged graphene strain sensor with high 

sensitivity and durability was also reported for detecting human motions (Yang et al. 

2018b). The sensors were obtained using a polydimethylsiloxane film as the substrate, 

coating by Ag nanoparticles and reduced graphene oxide film, pasting two copper foils on 

the two ends of the film as the electrodes by silver paste, and covering with another 

polydimethylsiloxane film on Ag nanoparticles bridged graphene sheet composite as an 

encapsulate shell. It obtained a large GF of 475 and a strain range of > 14.5% for the strain 

sensor. The strain sensor detected both large-scale and small-scale human motions. More 

recently, Zhang et al. (2020) fabricated a silver nanowire-coated thiolated graphene foam 

and polyurethane elastomer self-healable strain sensor with high sensitivity, fast response 

ability, good stretchability, and durability. A silver nanowire@thiolated graphene foam- 

based strain sensor was prepared by, respectively, connecting with a thin copper wire at 

the two ends of silver nanowire@thiolated graphene foam as electrodes under the adhesion 

of silver paste. The 3D binary conductive-network silver nanowire@thiolated graphene 

foam-based strain sensor was obtained by placing the silver nanowire@thiolated graphene 

foam in a Teflon template, injecting tetrahydrofuran solution of functionalized 

polyurethane into the template to submerge the silver nanowire@thiolated graphene foam, 

and drying at room temperature for 48 h. It achieved a GF of 11.8 and response/recovery 

time of 40/84 ms. All the pulse beats, voice recognitions, various joint movements, and 

handwriting were detected based on strain sensor. The high conductivity of flexible silver 

nanowires favored the increase sensor property of graphene composites, including high GF 

and fast response/recovery time.  

Carbon black also has received attention because of its large surface area (Lian and 

Xing 2017; Silva et al. 2017). Souri and Bhattacharyya (2018) reported wearable, 

stretchable, and durable yarns/graphene/carbon black strain sensors for human motion 

detection. The strain sensors had sensitivity with GFs of 1.46 to 5.62. All finger, wrist, and 

knee joint movements, pronunciation, breathing, and swallowing can be detected using 

these strain sensors. Moreover, Liu et al. (2021) applied wearable paper-based carbon 

black/graphene sensors for humidity and volatile organic compounds (VOC) detection. 

The sensors can detect relative humidity of 33 to 95% and VOCs of methanol, toluene, and 

petroleum ether with relatively short response time.  

Molybdenum disulfide (MoS2), a similar two-dimensional (2D) material with 

graphene, has an energy band gap of 1.8 eV. Kim et al. (2018a) reported a flexible 

MoS2/graphene foam/ecoflex hybrid strain-pressure sensor with high sensitivity and 
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durability. It achieved a sensitivity of 6.06 kPa-1 and good durability. The sensor can detect 

motion signals of neck bending and eye blinking. Furthermore, Chhetry et al. (2019) 

created a highly sensitive and reliable MoS2-decorated laser-induced graphene 

piezoresistive strain sensor. It exhibited sensitivity with GF of 1242, a wide working range 

up to 37.5%, detection limit of 0.025%, and relaxation time of 0.17 s for the piezoresistive 

strain sensor. The sensor is used to detect the signals of phonation, wrist pulse, and large 

deformations. 

Textile strain sensors display the advantages of wearability and stretchability 

(Castano and Flatau 2014; Hamid and Debes, 2018; Seyedin et al. 2019). Yang et al. 

(2018a) reported a wearable graphene textile strain sensor with negative resistance 

variation for human motion detection. The sensor had high sensitivity, long-term stability, 

and great comfort. The sensor was reported for detecting both subtle and large human 

motions. After that, Chun et al. (2019) reported the graphene-coated fabric sensors for 

health monitoring and medical applications. The sensor monitored wrist pulse, 

electrocardiography, body motions, and speech vibrations. Liu et al. (2019) also developed 

semitransparent, ultrasensitive, and wearable graphene woven fabric strain sensors for 

human physiological signals monitoring. It obtained a high GF, a broad sensing range up 

to 30%, and linearity for strain sensors. These sensors can be applied in human motion 

detection and switch controls of LED lamps and liquid-crystal-display circuits. Recently, 

Zheng et al. (2020) prepared two kinds of graphene/cotton fabric strain sensors with high 

durability and low detection limit. It achieved linear current-voltage behavior, response 

time similar to 90 ms, and low strain similar to 0.4% strain for the two strain sensors.  

In Wu et al. (2020)’s work, a flexible positive graphene pressure sensor was 

developed for real-time health and motion monitoring. The sensor achieved an ultrahigh 

sensitivity and a broad detection range, detecting varieties of physiological signals and 

human movements. Li et al. (2020) also prepared a flexible braided graphene belt/dragon 

skin strain sensor. The strain sensor had a sensing range up to 55.6%, high sensitivity of 

GF of 175.16, and low hysteresis, detecting the subtle actions and joint-related movements. 

Wang et al. (2022) presented a flexible tactile porous graphene/silicone rubber composite 

sensor with high sensitivity, good dynamic response, and repeatability for human motion 

and health monitoring. The composite’s pressure sensor had sensitivities of 195 kPa-1 at 55 

to 80 kPa. The sensor detected the distributed motion signals and pulse. An 

alginate/graphene aerogel pressure sensor with sponge-like structure was introduced for 

motion detection (Yue et al. 2021). It achieved an operation range of up to 1000 kPa with 

high sensitivity, low detection limit, and rapid response time for the aerogel pressure sensor. 

More recently, Li et al. (2022) also reported a compressible and sensitive 

graphene/wastepaper aerogel pressure sensor with 3D porous structure. The pressure 

sensor had a working range of 0 to 132 kPa, detection limit of 2.5 Pa, and sensitivity of 

31.6 kPa-1, detecting the pulse of the human body, cheek blowing, and bending of human 

joints. 

Graphene oxide (GO) has more active properties than graphene because of its 

increased oxygen-containing functional groups after oxidation. Kafy et al. (2016) reported 

on a flexible cellulose nanocrystal (CNC)/GO composite film as a humidity sensor. The 

sensor had advantageous linear and fast response because of the hydrophilic functional 

groups in the composite. Kim et al. (2018b) fabricated highly durable and waterproof 

reduced graphene oxide (rGO)/single-walled carbon nanotube (SWCNT) hybrid fabric 
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strain-pressure sensors for human-motion detection using a solution process. The device 

had water resistant properties because of its hydrophobic nature after 10 washing tests. The 

sensor-based motion glove indicated its practical applicability. Jiang et al. (2019) presented 

the flexible porous rGO fiber fabrics pressure sensor. The fabrics pressure sensor had a 

sensitivity of 0.24 to 70.0%, a GF of 1670, a detection limit of 1.17 kPa, and a response 

time of 30 ms. It reported the increased sensitivity due to the wrinkles on the rGO fibers 

surface. Lu et al. (2021) reported a flexible conductive rGO/polyurethane foam with an 

ultra-wide pressure detection range and high stability via freeze-drying and dip-coating 

method. The foam possessed the pressure detection range from 20 kPa to 1.94 MPa, 

sensitivity of 0.0152 kPa-1, and response of 166 ms. Deng et al. (2021) fabricated 

functionalized Janus GO nanosheets/polypyrrole (PPy) and poly(2-(dimethylamino)ethyl 

methacrylate) (PDMAEMA)/guar gum-poly(acrylic acid) nanocomposite hydrogel strain 

sensors for human motion detection. It achieved a self-healing efficiency of 92.8%, a 

strength of 4.12 MPa, and a toughness of 874% for nanocomposite hydrogels. The hydrogel 

sensors can monitor a variety of human motions. Cheng et al. (2021) developed a poly 

(styrene-co-methacrylic acid)@PPy/rGO-decorated thermoplastic polyurethane electro-

spun membrane piezoresistive sensor for health monitoring and motion detection. The 

pressure sensor can detect a small pressure of 0.94 Pa, with an operating voltage of 1.0 V, 

response time of 37 ms, and cycle stability over 1,650 cycles). The sensor monitors the 

human pulse, facial muscles, and joint movements. In view of the above reports, graphene-

based composites have been applied as strain-pressure sensors for motion detection 

applications. 

 
 
MXENE-BASED COMPOSITE FOR MOTION DETECTION APPLICATIONS 
 

MXene is a 2D inorganic material that consists of transition metal carbides, nitrides, 

or carbonitrides (Naguib et al. 2011, 2012), which have inherent electronic conductivity, 

excellent hydrophilicity, rich surface chemistry and layered structure. MXene has metal 

conductivity because of hydroxyl or terminal oxygen on the surface (Naguib et al. 2012; 

Ling et al. 2014). Yang et al. (2019b) reported a Ti3C2Tx MXene nanoparticle-nanosheet 

hybrid network strain sensor with a high sensitivity and a wide sensing range for motion 

detection. It obtained a sensitivity of GF of 178.4, the detection limit of 0.025%, and a 

cycling durability over 5,000 cycles. In the review article, Yuan et al. (2020) introduced 

recent progress and challenges of MXene-based sensors to detect human physical signals 

(body motion and temperature) and chemical signals (body cancer biomarkers and small 

molecules). They provided a perspective about the applications of MXene-based sensors 

for seniors.  

Rapid progress has been achieved on MXene/polymer composites for motion 

detection applications. For example, Song et al. (2019) fabricated flexible hollow MXene-

PDMS composites as wearable and highly bendable sensors. The piezoresistive pressure 

sensor had a working range with bending angles of 0 to 180°, a reliability up to 1,000 

cycles, a stable durability with a bending angle of 30°, and a detection limit of 10 mg for 

pressure detection. The sensor can be used for stereo sound and ultrasonic vibration 

monitoring, swallowing, facial muscle movement, and various intense motion detections. 

Yang et al. (2019a) also presented a wearable Ti3C2Tx/graphene/PDMS composite film 
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strain sensor with high sensitivity and large range of linear response. The strain sensors 

had a GF of 190.8 in strain ranges of 0 to 52.6% and 1150 in strain ranges of 52.6 to 74.1%, 

a detection limit similar to 0.025%, a linearity of approximately of 0.98, and a cycling 

stability over 5,000 cycles. The authors indicated the different distinguished breathing 

patterns in yoga by the sensor. Chao et al. (2020) reported a flexible wearable 

MXene/polyaniline fiber nanocomposite strain sensor for broad-range ultrasensitive 

sensing. The nanocomposite strain sensor detected up to 80% strain of human motion with 

detection limit of 0.154% strain, and sensitivity of GF up to 2370.  

One-dimensional (1D) CNTs were reported in composite 2D MXene for motion 

detection applications. Yang et al. (2021) reported a superhydrophobic MXene-coated 

carboxylated CNTs/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. The 

pressure sensor had a response time of 62 ms, a detection range up to 80 kPa, as well as 

electrical stability and repeatability under humid and sweaty environments. The sensor 

monitors human motions including joint movements, walking, running, pronunciation 

recognition, and finger tapping. Moreover, Wang et al. (2021) developed a CNT/Ti3C2Tx 

MXene/polyurethane strain sensor for the monitoring of human activities. The sensor had 

a working strain range close to 100% and a sensitivity as high as 363 simultaneously. The 

strain sensor detected joint motion, finger motion, and vocal cord vibration.  

Various additives have been introduced into MXene to fabricate composites for 

motion detection applications (Nauib et al., 2014). Ma et al. (2020) developed a 

hydrophobic and multifunctional MXene (Ti3C2Tx)-decorated airlaid paper composite for 

motion monitoring. The composite exhibited good electronic/photonic/mechanical 

triresponsive properties. The sensor displayed high sensitivity and rapid response time of 

30 to 40 ms, capturing a wide range of movements. Chao et al. (2021) presented a wearable 

MXene/protein nanocomposite-based pressure sensor with reliable breathability, 

biocompatibility, and robust degradability for human motion detection. The sensor had a 

sensing range up to 39.3 kPa, sensitivity of 298.4 kPa-1 for 1.4 to 15.7 kPa, 

response/recovery time of 7/16 ms, and cycling stability over 10,000 cycles, monitoring 

human psychological signals and wireless biomonitoring in real time. Li et al. (2021) 

fabricated MXene helical yarn/fabric tactile sensors with a GF of 715.94 for motions 

detection. The tactile sensors can recognize sign language, record middle and large human 

body motions, and detect walking postures and detect electric heating. Su et al. (2022) 

proposed layered MXene/aramid composite film with 10 μm thickness and flexibility for 

a sensitive pressure sensor. The sensor had a sensitivity of 16.7 kPa-1, a detection range of 

> 100 kPa, and up to 10% stretchability. The sensor can be used in motion monitoring and 

human-machine interfaces. Zhang et al. (2022) prepared a cross-linked collagen 

fiber/MXene composite aerogel sensitive pressure sensor. The sensor exhibited a 

sensitivity of 62.0 kPa-1, a response time of 0.30 s, a recovery time of 0.15 s, and a detection 

limit of 0.4 kPa. 
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Fig. 1. Strain-sensing properties of the TOCNFs/Ti3C2 textile: a) The TOCNFs/Ti3C2 textile strain 
sensor; b) Relative resistance variation of the stain sensor under various cyclic strains; c) 
Relative resistance response of the stain sensor at different frequencies under 5% of stain; d) 
Relative resistance change of the stain sensor during 500 cycles of stretching and releasing 
between 0% and 5% strain at a strain rate of 1.3 mm s-1. Relative resistance changes of e) finger 
bending, f) wrist bending, g) swallows of the throat, and h) speaking “Hello” and “NIHAO” (Cao et 
al. 2019) 

 

Nanocellulose is extracted from natural fibers, which has renewable, 

biodegradable, and excellent mechanical properties. Cao et al. (2019) first synthesized 

flexible smart fibres and textiles using a 3D-printing process with MXene reinforced 

TOCNF inks for wearable heating textiles, health monitoring, and human–machine 

interfaces. TOCNF/Ti3C2 textile sensitive strain sensors displayed good responsiveness to 

multiple external stimuli (electrical/photonic/mechanical) (Fig. 1). Pi et al. (2021) 

developed robust and ultrasensitive CNC/MXene hydrogel sensors. The hydrogel exhibited 

excellent mechanical properties, conductivity of 0.4 S/m, and thermal conductivity of 0.38 

W/mK.  

Cao et al. (2020) developed a stretchable MXene liquid electrode triboelectric 

nanogenerator (TENG). The MXene-based TENG sensor was used to inspect the frequency 

and amplitude of various physiological movements (Fig. 2). After that, Sardana et al. 

(2022) synthesized an electrospun MXene/TiO2/cellulose nanofiber (CNFs) 

heterojunction-based TENG sensor with reproducibility and high selectivity for detection 

of NH3. The sensor had sensitivity toward NH3 (1 to 100 ppm) along with a 

response/recovery time of 76 s/62 s at room temperature. Furthermore, Cao et al. (2022) 

achieved crumpled MXene film pressure and strain sensor as the single-electrode mode 
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TENG for wireless human motion detection. The sensor had sensitivity of 2.35 V kPa-1, 

collecting complicated movement signals.  

 

 
 

Fig. 2. CM-TENG-based self-powered biomechanical sensor for monitoring human body 
movements: a) finger bending, b) finger tapping, and c) neck movement. Generated VOC of the 
CM-TENG under different bending frequency of d) wrist, e) arm, and f) knee (Cao et al. 2020)  
 

 

POLYMER-BASED COMPOSITE FOR MOTION DETECTION APPLICATIONS 
 

Traditional rigid inorganic integrated devices cannot be closely fitted and integrated 

with the flexible tissue of the human body, so they cannot be accurately monitored. Fabbri 

et al. (2011) explored poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for 

biomedical optical pH sensors. The pH optical sensors were used for the fast detection of 

biomedical parameters of fast esophageal pH-monitoring. Someya et al. (2016) published 

the article "The rise of plastic bioelectronics," indicating that plastic bioelectronics 

combined the inherent properties of polymers and soft organic electronics for the 

applications in the fields of wearable and implantable devices. Yan et al. (2018) developed 

the stretchable graphene/poly(glycerol sebacate) nanocomposite piezoresistive sensor for 

motion detection. The nanocomposite sensor had high sensibility for all the processed 

strain gauges. The sensors were applied to monitor the bending movement of the finger. 

Hu et al. (2018) reported a polyvinylidene fluoride (PVDF) piezoelectric thin film sensor 

for wrist motion signal detection. The sensor had sensitivity of 3.10 pC/N with the 

excitation signal exceeding 15 Hz. The wrist motion sensor was small in size, flexible, and 

sensitive, detecting the wrist motion signals with weak amplitude, low frequency, strong 

interference, and randomness. He et al. (2021) prepared a flexible porous 

CNT/graphene/PDMS nanocomposite strain sensor. The strain sensor had GFs of 182.5, 

45.6, 70.2, and 186.5 in the 0 to 3, 3 to 57, 57 to 90, and 90 to 120% strain regions. It had 

a detection limit of 0.5% strain, a response time of 60 ms, stability and durability of 10,000 
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cycles. The porous strain sensor detected wrist bending, finger bending, elbow bending, 

and knee bending. 

Poly(vinyl alcohol) (PVOH) is widely used to synthesize hydrogels. The Ag/tannic 

acid @CNCs/PVOH biomimetic hydrogels were obtained for artificial electronic skin (Lin 

et al. 2019). The multifunctional biomimetic skin hydrogel combined ultra-stretching (> 

4000%), highly effective refolding self-healing (self-healing efficiency of 10 min up to 

98.6%), compliance, and stress perception. The capacitive hydrogel sensor had good 

flexibility, high sensitivity, and wide detection range for accurate monitoring of human 

activities. Gao et al. (2020) constructed a multi-model PVOH hydrogel sensor with high 

toughness, fast self-recoverability, and excellent fatigue resistance for human-motion 

monitoring. It obtained ultra-stretchability (1120%) and supercompressibility (98%) for a 

hydrogel sensor. The sensor detected a large range elongation close to 900%, compression 

close to 70%, bend and pressure up to 4.60 MPa concurrently, as well as speaking, finger 

bending, and treading behavior. Yao et al. (2021) also fabricated a conductive 

PVOH/phosphoric acid gel electrolyte@PDMS composite for piezoresistive pressure 

sensor. The sensor had sensitivity of 0.1145 kPa-1, response time of 70 ms, and durability 

for over 2,700 s. The sponge sensor detected vocal cord vibration, joint bending, respiratory 

rate, and pulse signal detection. More recently, a fully flexible polyaniline/PVOH/borax 

cellulose nanocomposite hydrogel sweat sensor was fabricated for self-powered health 

monitoring (Qin et al. 2022), which had tensile and electrical self-healing efficiencies 

exceeding 95% within 10 s, a stretchability of 1530%, and conductivity of 0.6 S m−1. It 

achieved Na+, K+, and Ca2+ contents to sensitivities of 0.039, 0.082, and 0.069 mmoL–1 for 

the sweat sensor, respectively.  

Biomass is also used as an additive to fabricate polymer-based composites for 

motion detection applications. Liu et al. (2017) developed a wearable, self-healing, and 

elastic hydrogel strain sensor. The hydrogel had self-healing capability in only 5 min due 

to ionic coordination between CNCs and Fe3+. The strain hydrogel sensor could monitor 

finger joint motions, breathing, and slight blood pulse. Qu et al. (2021) prepared lignin-

reinforced poly(ionic liquid) hydrogel strain sensor with stretchability over 1425%, 

toughness over 132 kPa, and impressive stress loading-unloading cyclic stability. The 

strain sensor presented a high GF of 1.37, a response rate of 198 ms, and a low detection 

limit. The hydrogel can detect dual stimuli of strain and temperature. The CNC hydrogels 

were widely applied as strain sensors for detecting human motion. Moreover, the flexible 

conductive hydrogels sensors integrated with electrical conductivity of 2.58 mS cm−1 were 

made using PVOH, CNFs, and MXene (Zhang et al. 2021a). The sensors had sensitivity 

of GF of 2.30, response time of 0.165 s, working strain range of 559%, and operating 

temperature from −18 to 60 °C. The hydrogel sensors displayed the corresponding current 

signal for human motion detection, such as human swallowing, heart beating, wrist bending, 

and elbow bending. More recently, Guo et al. (2022) prepared the bacterial cellulose (BC)-

based organohydrogels with tensile stress > 1.0 MPa and tensile strain of 1300% via 

microwave heating and acid catalysis method. It observed increased mechanical properties 

because of the hydrogen bond and the metal bonds with BCs-Ca2+ coordination. The 

flexible wearable sensors accurately monitor the large motion of fingers, wrist, elbow, and 

knee bend and walking and subtle physiological signals of the blink of an eye, and voice 

recognition (Fig. 3). Hemicellulose composite hydrogel sensors are also used for sports 

monitoring. The authors prepared multifunctional physical cross-linked hemicellulose/PPy 
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composite hydrogels for sports monitoring, medical monitoring, and soft intelligent robots 

(Zhang et al. 2021b). It achieved the tensile strain of 1090%, stress of 481 kPa, compressive 

strength of 1790 kPa, and toughness of 2.82 MJ/m3 for the hydrogels. The hydrogel sensors 

were reported to detect finger bending, wrist bending, and throat deformation during 

drinking and speaking. The sensors generated the corresponding signals during drinking 

water and speaking English words such as "sensor" and "hydrogel". 

 

 
 

Fig. 3. The motion detection of C-Gly5 organohydrogels sensor: (a through f) walking, elbow and 
knee bending, pressing, finger and wrist bending; (g through i) blinking and speech (Guo et al. 
2022) 

 

 
CONCLUSIONS 
 

In summary, this mini-review article described the recent development of flexible 

functional composites for health monitoring and auxiliary training applications. Especially, 

the synthetic methods, structures, and properties of functional composites, such as 

graphene-based composites, MXene-based composites, and polymer-based composites, 

were reviewed. As mentioned above, rapid progress has been achieved on these flexible 

functional composites. The flexible functional composites have promising applications 

potential as sensors in the health monitoring and auxiliary training fields.  
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Although the research on flexible functional composites for health monitoring and 

auxiliary training has made great progress, there are still some great difficulties and 

challenges, such as facile synthetic process, microstructure controllability, high efficiency, 

and industry applications. The future research trends and future research directions of the 

flexible functional composites for health monitoring and auxiliary training included the 

various flexible functional composites, composites sensors, and information system 

integration. The development of flexible composites sensors is still in its infancy and many 

problems need to be solved, such as signal interference, short continuous monitoring time, 

and poor durability.  

Athletes' auxiliary training is a systematic system, which is complex and known to 

be sensitive to many factors interacting with each other. One of the challenges of auxiliary 

training monitoring is how to select suitable methods and technologies from a variety of 

sports evaluation methods and technologies. Monitoring methods can be simple and low-

cost methods, or more complex and expensive methods, including the analysis of 

biochemical markers and the use of GPS and motion sensors to measure athletes' trajectory. 

It is expected that these flexible functional composites will have wider applications for 

health monitoring and auxiliary training in the near future. 
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