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Delignification’s Effect on Microcrystalline Cellulose 
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The effects of acidified chlorite (NaClO2) and totally chlorine free (TCF) 
bleaching were evaluated relative to the properties of microcrystalline 
cellulose (MCC) fabricated from oil palm empty fruit bunch fibres (OPEFB). 
The MCC properties were analyzed using X-ray diffraction (XRD), 
scanning electron microscopy (SEM), and thermogravimetric analysis 
(TGA) methods, and they were compared with commercial MCC. The 
results revealed that all MCC belongs to cellulose type 1 and OPEFB-
NaClO2-MCC showed a higher crystallinity index than OPEFB-TCF-MCC. 
The TGA indicated that all MCC samples showed a higher decomposition 
temperature compared to pure cellulose. However, OPEFB-NaClO2-MCC 
showed better thermal stability than OPEFB-TCF-MCC. It was clear from 
SEM images that the different MCC particles had rough surfaces and 
micro-sized particles. Overall, results confirmed that the obtained MCC 
samples displayed comparable properties with those of commercial MCC. 
The MCC produced from OPEFB using NaClO2 is a promising material to 
prepare high value-added products compared to MCC produced using 
TCF delignification treatment. 
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INTRODUCTION 

The demand for sustainable and renewable materials has increased intensely in the 

last few decades and is the topic for the “2030 Agenda for Sustainable Development” 

organized by the United Nations General Assembly (2015). In line with the United Nations 

mantra “Transforming our world”, the focus is to protect the planet from exploitation of its 

natural resources (Haldar and Purkait 2020). As awareness of the impact of climate change 

grows, researchers have reported that one of the most abundant and sustainable 

biopolymers on earth is cellulose. This versatile and renewable material can be obtained 

from various sources such as agricultural waste or biomass (Galiwango et al. 2019; Li et 

al. 2019; Mishra et al. 2019). 

Natural cellulosic fibers derived from lignocellulosic biomass have several 

advantages, including their abundance, renewable nature, low cost, high specific strength, 

and reactive surfaces, coupled with their biocompatibility and biodegradability, which has 
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been a great asset in applying micro and nano-sized particles from cellulose fibre for 

enhancement of strength properties in composites. When compared to synthetic fibre 

composites, natural fibre composites use less energy to manufacture. Globally accessible 

natural fibres have been employed and studied as reinforcement in polymer composites 

such as bagasse (Alizadeh Asl et al. 2017; Abd El-Baky et al. 2019; Suresh et al. 2020), 

hemp (Dayo et al. 2017), and date palm (Awad et al. 2020; Alhijazi et al. 2020). These 

fibres offer similar qualities and can be used to replace synthetic fibre composites (Kannan 

and Thangaraju 2021). Since the production and report of microcrystalline cellulose 

(MCC) by Smith and Battista (1955), it has since been widely used in various industries 

because of its numerous advantages (Taiwo et al. 2016; Tarchoun et al. 2019). Any 

material that contains a high concentration of cellulose can be used to make MCC. Various 

lignocellulosic biomass sources for MCC are reported in the literature such as forest residue 

(rose stem and date seeds), agricultural residue (tea wastes), and aquatic residue (brown 

algae) (Haldar and Purkait 2020). 

Malaysia’s and the world’s palm oil industries have continued to expand to 

sustainably meet the growing global demand for oils and fats as stated by the Malaysia 

palm oil council (2019). With a palm tree yielding only 10% oil, this growth results in a 

variety of wastes from oil palm products because of its vast planting lands and large number 

of oil palm mills (Shamsuddin et al. 2021). Oil palm activities generate a variety of wastes, 

including oil palm empty fruit bunches (OPEFB), oil palm fronds (OPF), and oil palm 

trunks (OPT) (Ramlee et al. 2021). This results in roughly 90% of enormous amounts of 

waste biomass from oil palm activities, while about 10% of oil extraction comes from two 

primary sources: plantations and mills. While oil palm plantations generate a large amount 

of oil palm trunks and fronds, other biomasses, such as mesocarp fibre, kernel shell, and 

empty fruit bunches are generated during the milling of fresh fruit bunches (Anuar et al. 

2019). Oil palm empty fruit bunch generates up to 22 to 23 million tons of residue yearly 

in Malaysia and is the cheapest natural fibre with as good characteristics as a non-wood 

fibre. It has a lot of promising characteristics as a major raw material to replace woody 

plants, which are expensive in many sectors (Padzil et al. 2020). These organic and natural 

by-products have the potential to be employed as a value-added product in the industrial 

sector. 

As with other plant species, cellulose, hemicellulose, and lignin are the major 

constituents of biomass’ natural fibres, which also contain trace amounts of proteins and 

extractives. Cellulose is well-embedded in the intricate network of hemicellulose and lignin 

in each of the fibre materials. Apart from the treatment process chosen, the quality and 

quantity of cellulose used in the process dictate the formation of derivatives. Thus, it is 

critical to emphasize the structure and composition of cellulose within the lignocellulosic 

biomass fibres. 

The properties of the modified cellulose properties are not only dependent on the 

type of lignocellulosic source but also on the pretreatments used to extract its native 

cellulose. These pretreatments are performed to separate pure and crystalline cellulose. 

They are also used to reduce the degree of polymerization and increase the reactivity of 

cellulose (Kargarzadeh et al. 2017). Due to the various factors that can affect the success 

of the pretreatment, it is important that the techniques are optimized to avoid generating 

toxic, hazardous wastes as well as high overall process costs (Phanthong et al. 2018). The 

delignification process is widely used to remove hemicellulose and lignin from raw 

biomass (Jiang and Hsieh 2015; Ilyas et al. 2018; Liao et al. 2020); however, various other 

methods have been used as well to remove hemicellulose and lignin. Asl, Mousavi, and 
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Labbafi (2017) extracted alpha cellulose using a digester at 370 °C, then bleached the fibres 

with chlorine gas and sodium hypochlorite. Asif et al. (2022) in other hands, delignified 

pedicles fiber with 5% wt NaOH solution and bleached the resulting fibres with sodium 

chlorite solution to obtain cellulose. Shi and Liu (2021) extracted cellulose using totally 

chlorine free bleaching method. The conventional method involves the use of chlorine-

based protocol, but recent approaches are by green delignification with totally chlorine free 

methods (Cheng et al. 2018; Robles et al. 2018). To reduce the production of chlorinated 

organic compounds during pulp manufacturing, totally chlorine-free (TCF) bleaching is 

being used more frequently as a result of global trends and environmental pressures for 

cleaner bleaching processes (Li et al. 2017). 

The dependence of the isolated pure cellulose and MCC from OPEFB on the raw 

material, the process, and also the pretreatments has been widely reported. Various 

previous studies have been conducted to generate MCC from OPEFB. Despite this, there 

have been no controlled studies comparing differences in the effects of pretreatment on the 

final characteristics of the derived MCC from OPEFB. This paper aims to improve the 

efficiency of the process by developing effective methods for the isolation and production 

of pure MCC from OPEFB and to compare two different pretreatment processes before 

MCC isolation. To achieve this, two delignification processes were employed in this study, 

the acidified chlorite (NaClO2) method and the totally chlorine free (TCF) delignification 

method. The prepared MCC samples were characterized with analytical techniques of 

Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron 

microscopy (SEM), and thermogravimetric analysis (TGA) to investigate the impact of the 

different delignification process used on the physiochemical and thermal properties of 

isolated MCC. The commercial MCC was used as reference to compare the properties of 

extracted MCC. 

 

 

EXPERIMENTAL 
 
Materials 

The OPEFB strands were procured from United Oil Palm Sdn Bhd, Nibong Tebal, 

Penang, Malaysia. Commercial microcrystalline cellulose (Sigma-Aldrich (31069-7)) used 

as a control. Other materials used include distilled water, sodium hydroxide (NaOH), 

sodium chlorite (NaClO2), acetic acid 98%, hydrochloric acid (HCl) 37%, magnesium 

sulphate heptahydrate (MgSO4.H2O), hydrogen peroxide (H2O2), sulphuric acid (H₂SO₄), 

ammonia hydroxide (NH₄OH), and silicon oil; all chemicals used were purchased from 

Sigma Aldrich, Merck (United States). 

 

Preparation of OPEFB pulp with soda pulping  

The OPEFB strands were pre-hydrolyzed via immersion in water for 1 h at 170 ℃ 

in a digester. The preparation of OPEFB pulp was completed by the pulping milieu as 

reported by Leh et al. (2008). After that, OPEFB was washed to eliminate all 

contaminations. A total of 300 g oven-dried (OD) OPEFB was pulped with 26% NaOH 

solution at a solid-to-liquid ratio of 1:7 and heated to 170 ℃ for 100 min. The obtained 

OPEFB pulp was then washed with water through a hydro pulper and then screened using 

pulp screening equipment with diameter of 15 mm. The fine OPEFB pulp was labeled as 

dissolving pulp and kept in the refrigerator for further study. 
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Preparation of totally chlorine-free cellulose 

Three sequences that were used to produce totally chlorine-free (TCF) pulp include 

oxygen, ozone, and peroxide bleaching according to the procedure reported by Leh et al. 

(2008). Oxygen bleaching was completed using an autoclave equipped with a gas inlet, 

stirrer, and computer-controlled thermocouple manufactured by Parr Instrument Company, 

Moline, IL, USA. A total of 100 g OD of dissolved pulp was mixed with 1.0% magnesium 

sulfate (MgSO4.7H2O) solution, 2.0% sodium hydroxide (NaOH) solution, and an 

appropriate amount of water to achieve 10% concentration. The reaction temperature and 

oxygen pressure were maintained at 95 ℃ and 80 psi, respectively. The autoclave was 

maintained for 30 min with occasional stirring. 

A modified revolving vessel designed for evaporation attached to an ozone 

generator and oxygen cylinder was used for ozone bleaching. The pulp was treated with 

acidic water at a pH of 1.5 (adjusted by addition of H2SO4) for 2 h. Then, the pulp was 

squeezed to a consistency of 27% and placed in a round bottom flask reaction vessel. The 

regenerated ozone gas was passed through the vessel and the vessel was rotated to make 

sure homogeneous mixing between pulp and ozone gas for 2.5 min. The reaction was 

continued for another 20 min. Then the obtained pulp was washed with distilled water. 

The next stage was hydrogen peroxide bleaching, for which 3.0% hydrogen 

peroxide solution, 2.0% NaOH solution, and 0.5% MgSO4·7H2O solution based on pulp 

weight were mixed with an appropriate amount of water to achieve 15% concentration. 

The pulp slurry was transferred to a plastic bag and the reaction was completed at 65 ℃ 

for 1 h in a water bath and squeezed every 10 min to get proper extraction. The pulp was 

then treated with purified water. To obtain pure cellulose from delignified pulp, the pulp 

was then treated with 17.5% NaOH at 80 ℃ for 1 h following the Pachuau et al. (2014) 

method. The sample was filtered, repeatedly washed with distilled water to neutralize it, 

and oven-dried overnight at 40 ℃ and labeled as OPEFB-TCF-C. 

 
Preparation of acidified sodium chlorite cellulose pulp 

The dissolving pulp was added with acidified sodium chlorite according to the 

report by Foo et al. (2020). Then, 20 g of dissolving pulp was added with NaClO2 and 10% 

of acetic acid until the pH reached 4. The dissolving pulp was boiled in sodium chlorite 

solution for 2 h at 80 ℃. The resultant delignified dissolving pulp was subsequently 

washed with distilled water. To obtain pure cellulose from delignified pulp, the pulp was 

treated with 17.5% NaOH at 80 ℃ for 1 h following Pachuau et al.’s (2014) method. The 

sample was filtered, repeatedly washed with distilled water to neutralize it and oven-dried 

overnight at 40 ℃ and denoted as OPEFB-NaClO2-C. 

 
Production of OPEFB MCC 

The acid hydrolysis treatment was conducted to obtain MCC according to the 

optimized method describe by Hassan et al. (2019). 10 g oven dried weight of OPEFB 

cellulose sample was added with 2.5 N hydrochloric acid with the ratio of 1:20 (OPEFB 

cellulose to dilute acid) and heated using silicon oil at temperature 106 C for 20 min. After 

being hydrolyzed, the sample was then washed with distilled water and 5% NH₄OH 

solution to achieve a neutral pH of 7. The sample was then dried at 40 ℃ overnight until 

consistent weight and subsequently ground into fine powder. 
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Methods 
Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy was performed on an infrared spectrometer 

(Perkin-Elmer; PC1600, USA) using the potassium bromide (KBr) method. The oven-dried 

powder of each sample was mixed with KBr with a ratio of 1:100 and then pressed to form 

a pellet. The pellet was scanned within the range of 500 to 4000 cm-1 at a resolution of 4 

cm-1.  

 

Thermogravimetric analysis  

A thermogravimetric analyzer (TGA/DSC 1; Mettler-Toledo, Switzerland) was 

used to determine the thermal stability of the samples. The samples were scanned from 30 

℃ to 800 ℃ at a rate of 10 ℃/min-1 under a nitrogen gas atmosphere. The thermograms 

showed the plot of weight loss percentage against the temperature. 

 

Differential scanning calorimetry 

To determine the melting temperature for all samples, a modified Perkin Elmer 

Pyris 7 thermal analyzer was used under nitrogen purge at a heating rate of 10 ℃/min from 

room temperature to 400 ℃. 

 

Morphological analysis 

The morphological characteristics of the samples were observed using SEM 

analysis (Leo Supra 50 VP Field Emission; Carl- ZEISS SMT, Oberkochen, Germany). 

The entire sample was dried overnight in an oven at 40 ℃ to remove moisture. Then, the 

sample was coated with platinum before imaging to avoid charging. 

 

X-ray diffraction analysis 

The crystallinity of all samples was determined using XRD (D8 Advance; Bruker, 

Germany), and diffractograms of all samples were collected. The sample data crystallinity 

was obtained at 2θ between 5° and 45°. The approach of Segal et al. (1959) was used to 

measure the degree of crystallinity index using Equation 1 as follows, 
 

CrI (%) = (I200 – Iam) / I200  x 100      (1) 
 

where I200 is the peak intensity of the crystalline fraction and Iam is the peak intensity of the 

amorphous fraction. 

 

 
RESULTS AND DISCUSSION 
  
FT-IR Analysis  

The FT-IR spectra of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, 

OPEFB-TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC obtained are presented in 

Fig. 1. The peak assignments are summarized in Table 1. Based on Fig. 1, all samples 

showed three main absorbance regions, which are single bond region (2500 to 4000 cm-1), 

double bond region (1500 to 2000 cm-1), and fingerprint region (600 to 1500 cm-1) 

(Nandiyanto et al. 2019). There are more than five absorbance bands, indicating that the 

sample is a complex molecule. 
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Fig. 1. FT-IR spectra of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, OPEFB-
TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC 

There was a broad peak in the range 3200 to 3600 cm-1, indicating a hydrogen bond. 

This band confirms the presence of hydrate (H2O) and hydroxyl (OH) groups. The broad 

peak located from 3200 to 3600 cm-1 was assigned to the stretching vibration of -OH groups 

while the peak at 2900 cm1 represented the stretching vibration of C-H in -CH2 groups of 

primary alcohol (Fathy et al. 2016). In the double bond region (1500 to 2000 cm-1), peaks 

at 1641 cm-1 were detected. The absorbance band at 1641 cm-1 was due to the O-H bending 

of water molecules, and this showed the absorbance of water molecules by the samples due 

to the strong interaction between water molecules and cellulose (Haafiz et al. 2013; Trache 

et al. 2016). In the fingerprint region (600 to 1500 cm-1), several peaks were detected and 

indicated an aromatic ring. The absorbance band at 1425 cm-1 was assigned to the bending 

vibration of -CH2 group (Haafiz et al. 2013). The absorbance band at 1168 cm-1 was due to 

the stretching vibration of a glycosidic bond (C-O-C), while the absorbance band at 896 

cm-1 attributed to the rock vibration of C-H in cellulose (Fahma et al. 2010; Haafiz et al. 

2013).  From Fig. 1, the absorbance band at 1518 cm-1 can be seen clearly in the EFB 

spectrum and was due to the skeletal vibration of aromatic C=C. However, the absorbance 

band was absent in the spectra of bleached pulp (NaClO2-Pulp and TCF-Pulp) and MCC 

from both OPEFB-NaClO2-MCC and OPEFB-TCF-MCC, indicating that the lignin 

component in the EFB sample was completely removed after bleaching (Fahma et al. 2010; 

Haafiz et al. 2013). Moreover, the intensity of the peak at 1433 cm-1 for OPEFB-TCF-MCC 

increased, which suggested a higher degree of crystallinity of OPEFB-TCF-MCC (Hussin 

et al. 2016). 
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Table 1. FT-IR Spectral Peak Assignments for OPEFB-Raw, OPEFB-
Unbleached Pulp, OPEFB-NaClO2-C, OPEFB-TCF-C, OPEFB-NaClO2-MCC, 
and OPEFB-TCF-MCC 

Sample Wavenumber (cm-1)  Peak Assignment 

3200 to 3600 O-H stretching 

2894 -CH2 group stretching 

1641 O-H bending 

1425 Bending of -CH2 group 

1168 C-O-C stretching 

896 C-H rock vibration 

 

Through comparing the FT-IR spectra obtained, the spectra did not show particular 

changes based on the peak frequency, which suggested that the acid hydrolysis used to 

produce the MCC from bleached pulp will not affect the chemical structure of cellulosic 

components in MCC (Haafiz et al. 2013, 2014) 

 
Thermal Properties  

The results of the thermogravimetric analysis TGA (Fig. 2a) and differential 

thermogravimetric analysis DTG (Fig. b) curves were used to characterize the chemical 

phase to ascertain the thermal stability of cellulose and MCCs samples (OPEFB-Raw, 

OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, OPEFB-TCF-C, OPEFB-NaClO2-MCC, 

OPEFB-TCF-MCC). Table 2 shows the summary of the result of the changes in the thermal 

properties of the prepared samples which is important for the development of high 

temperature biocomposite materials. 

 

Table 2. Thermal Properties of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-
NaClO2-C, OPEFB-TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC 

Samples Onset Temperature 
Residual Weight (%) at 

400 (°C) 

DTG Peak 
Temperature, Tmax 

(°C) 

OPEFB-Raw 293.18 30.28 343 

OPEFB-Unbleached Pulp 341.74 2.3 366 

OPEFB-NaClO2-C 326.91 14.28 359 

OPEFB-TCF-C 333.03 10.26 352 

OPEFB-NaClO2-MCC 325.44 13.74 343 

OPEFB-TCF-MCC 307.51 11.22 327 

 

The TGA graph illustrated the sample’s weight loss over time while it was heated 

at a constant ramp rate. In the range of 50 to 400 °C, the thermogram curve revealed two 

weight loss expressions. Based on Fig. 2, the initial weight loss in the range of 50 to 150 °C 

was due to the evaporation of water from the surface of the samples. The sample’s 

intermolecular hydrogen bound water was evaporated at a temperature of around 150 °C. 

The second set of decreased in the curves in the range of 250 to 400 °C was due to the 

degradation of cellulose via disintegration of glycosyl units followed by transformation to 

char that occurred at maximum temperature of 250 °C to 400 °C, accounting for around 

80% of the overall degradation. This was followed by the char formation (Haafiz et al. 

2013, 2019).  
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Fig. 2. a) TGA and b) DTG curves of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, 
OPEFB-TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC 

 

Thermal degradation was seen at a lower temperature than the cellulose sample 

throughout a wider temperature range, indicating a reduced thermal stability because of a 

higher number of free ends in the chain, a reduction in molecular weight, and breakdown 

of cellulose's amorphous domains (Mandal and Chakrabarty 2011). This result was similar 

with previous studies (Haafiz et al. 2013; Hassan et al. 2019). 

a) 

b) 
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Based on Table 2, the degradation and DTG peak temperature of MCC were lower 

than OPEFB cellulose pulp, which may be due to the drastic decrease in the molecular 

weight of the latter caused by the acid hydrolysis that makes it more vulnerable to degrade 

when temperature increases (Haafiz et al. 2013; Dungani et al. 2017). It was observed that 

sample that was prepared using NaClO2 treatment displayed higher thermal stability 

compared to those obtained by the TCF treatment. 

However, the residual weight of MCC at 400 °C was higher than that of cellulose 

pulp due to the high crystallinity of MCC that makes it more flame resistant (Mandal and 

Chakrabarty 2011; Haafiz et al. 2013). Furthermore, it is worth mentioning that the sample 

prepared using NaClO2 delignification showed higher residual weight at 400 °C compared 

to those obtained by TCF treatment. The highest residual weight of EFB at 400 °C 

suggested that it contains inorganic material, such as ash, that cannot be degraded during 

the analysis (Taiwo et al. 2017). 

 
Morphology Analysis 

The surface morphology of all the OPEFB cellulose and MCC samples was also 

studied by SEM analysis, as shown in Fig. 3 (a to f). It was discovered that the morphology 

of MCC changed after treatment. The SEM images showed changes of morphology 

dimensions in terms of size and shapes of OPEFB pulp and OPEFB MCC.  

 

   

   
 

Fig. 3. SEM images of all cellulose: a) OPEFB-Raw, b) OPEFB-Unbleached Pulp, c) OPEFB-
NaClO2-C, d) OPEFB-TCF-C, e) OPEFB-NaClO2-MCC, and f) OPEFB-TCF-MCC 
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The OPEFB-Raw as Fig. 3a shows a slightly rough surface area with irregular 

flake-like structure, which possibly can be attributed to the presence of substances like 

wax, lignin, and hemicelluloses (Taiwo et al. 2017). After alkaline treatment without 

delignification process, there was no noticeable different between OPEFB- Raw and 

OPEFB-Unbleached Pulp. Bleaching treatment clearly changed the morphology of the 

OPEFB as shown in Figs. 3c and 3d. Both NaClO2 and TCF bleached samples showed a 

clean and smoother surface and showed a long and uniform fibre. This result indicated that 

lignin and hemicelluloses were removed. 

The MCC obtained after acid hydrolysis of the all the cellulose exhibited irregular 

shape, small-sized fibrils with diameters ranging from 10 to 19 m, and the MCC also 

agglomerated with each other. Each bleaching treatment shows a slightly rough surface. 

Because of depolymerisation of cellulose polymers to a shorter chained MCC, the structure 

of MCC differed from that of cellulose (Mat Soom et.al. 2009).This was probably caused 

by removal of hemicellulose, silica, and lignin. 

 
XRD Analysis 

X-Ray diffraction analysis was used to study the crystallographic structure of 

prepared sample materials. The XRD pattern of OPEFB-Raw, OPEFB-Unbleached Pulp, 

OPEFB-NaClO2-C, OPEFB-TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC are 

presented in Fig. 4. The patterns of XRD of various fibres are shown in Fig. 4. The peaks 

of these fibres were associated with cellulose type I structure. 

 
Fig. 4. XRD pattern of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, OPEFB-TCF-
C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC 
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  The percentage of crystallinity index, CI (%), of all samples was calculated and 

displayed in Table 3. Studies show that cellulose consists of both crystalline and 

amorphous regions. Based on literature studies, the structure of the samples showed four 

characteristic peaks, with amplitudes ranging from 14 to 34.4. It is clear that cellulose I 

does not have doublets and that the absence of cellulose II is observable. Analysis showed 

that the crystallinity index of the MCC sample was higher than the starting cellulose 

sample. This indicates the removal of amorphous regions throughout the process. In this 

study, the crystallinity index of MCC from NaClO2 delignification method compared to 

MCC from TCF delignification was 64.5% and 61.5%, respectively. The MCC with 

NaClO2 delignification method showed the peaks as sharper and more intense as compared 

to the TCF delignification method.  This might be due to the presence of some 

hemicelluloses that are not completely removed in TCF delignification, which leads to 

selective solubilization of the amorphous and hemicelluloses rather than the amorphous 

part of cellulose (Kishani et al. 2018). 

 

Table 3. CI of OPEFB-Raw, OPEFB-Unbleached Pulp, OPEFB-NaClO2-C, 
OPEFB-TCF-C, OPEFB-NaClO2-MCC, and OPEFB-TCF-MCC  

Sample Crystallinity Index (%) 

OPEFB-Raw 52.99 

OPEFB-Unbleached Pulp 60.24 

OPEFB–NaClO2-C 60.07 

OPEFB-TCF-C 59.85 

OPEFB-NaClO2- MCC 64.48 

OPEFB-TCF-MCC 61.51 

 

This result further shows that the acid hydrolysis process is not only utilized to 

hydrolyze the amorphous portions of cellulose molecules, but it also removes the remaining 

amorphous hemicelluloses. 

 

 

CONCLUSIONS 
 
1. Microcrystalline cellulose (MCC) was successfully isolated from oil palm empty fruit 

bunch (OPEFB) using different delignification processes after the acid hydrolysis 

process. The study showed a notable effect of the diversified delignification protocols 

on the MCC samples based on the characterization, studies of both MCC produced 

were comparable to commercial MCC-CMCC.  

2. The scanning electron microscopy (SEM) analysis illustrated that NaClO2 - MCC 

exhibited a rough and compact structure, similar to TCF-MCC, although it exhibited 

smaller size of MCC. The Fourier transform infrared (FTIR) analysis revealed that both 

acidified chlorite and totally chlorine free (TCF) delignification influenced the purity 

of cellulose without any impact on cellulose chemical structure. The X-ray diffraction 

(XRD) analysis showed that the different delignification methods used did not alter the 

crystal structure from the cellulose 1 allomorph of OPEFB, and the crystallinity index 

ranged from 61% to 69%. From the studies, acidified chlorite delignification produced 

a higher crystallinity index of MCC than the MCC produced from TCF delignification. 

Thermal analysis indicated that MCC produced through acidified chlorite 

delignification cellulose had good thermal stability compared to TCF delignification.  
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3. The finding of this study suggests that OPEFB MCC prepared with acidified chlorite 

delignification presented higher crystallinity index and higher thermal stability 

compared to TCF delignification process. However, the scope of these studies does not 

cover environmental considerations; it is only limited to diverse preparation milieu.  

4. The study concludes that MCC samples produced from OPEFB using NaClO2 is 

capable of giving high-value composite products compared to the MCC produced using 

TCF delignification treatment. 
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