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Data-Driven Soft Sensors in Refining Processes –  
Pulp Property Estimation Using ARX - Models 
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This paper focuses on estimation of shives(wide) and fiber length in 
RGP82CD-refiners using an AutoRegressive eXogenous (ARX) structure 
in a data-driven soft sensor concept. Both external and internal variables 
are considered as model inputs. The pulp properties were sampled every 
15 min from an on-line device positioned after the latency chest, whereas 
other process data were sampled every 6 seconds. Notably, despite the 
high data sampling rate, the development of robust models necessitated 
a dataset spanning over two months of process information. The external 
variables studied in this paper were specific energy, the sawmill chip 
content, plate gaps, and dilution water feed rates to each refining zone. 
Additional internal variables, such as the inlet flat zone temperature, the 
maximum temperature, and the periphery temperature in the conical zone, 
were also used as model inputs. It was concluded that both shives(wide) 
and fiber length can be estimated with relatively good accuracy although 
large uncertainties exist in the measured properties. Finally, it was shown 
that fast pulp property dynamics in the blow-line can be followed, which 
outperforms current practices of using pulp measurement devices 
positioned after the latency chest. This offers implementation of more 
advanced future pulp property control concepts. 
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INTRODUCTION 
 

In the last two decades, soft sensors have been established as valuable complements 

to traditional measurements for critical process variables, process monitoring, and process 

control. The term soft sensors imply the usage of software, usually computer programs. 

The soft sensors, based on the models, are expected to deliver similar information as their 

hardware counterparts (if they exist). In the process industry, such predictive sensors are 

also called inferential sensors, see e.g., Jordaan et al. (2004) and Qin (1997), virtual online 

analyzers, see Han and Lee (2002), and observer-based sensors (Goodwin 2000). 

Two different classes of soft sensors are often discussed in the literature: model-

driven and data-driven soft sensors. The model-driven family is most commonly based on 

first principle models (FPM), extended Kalman filter, and adaptive observers (Bastin and 

Dochain 1990; Chruy 1997; Assis and Filho 2000).  

In refining processes, related to mechanical pulping, FPMs have been developed 

over many years (Miles and May 1990, 1991; Huhtanen 2004). Originally, quite complex 

computational fluid dynamic models were in focus in describing the fiber, water, and steam 
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distribution along the radius of the refining segments (Karlström et al. 2008). Although 

such models are not suitable to implement in on-line applications, Karlström and Eriksson 

(2014a,b,c,d) show that a reduced 2-dimensional non-linear model can be derived for 

temperature and consistency control applications (Karlström and Hill 2018b,c). 

When it comes to the development of data-driven soft sensors, some popular 

modelling techniques for principal component analysis, system identification, and artificial 

neural networks are quite powerful (Ljung 1997; Principe et al. 2000; Jolliffe 2002; Wold 

et al. 2001). Such techniques are useful when studying refining processes (Berg 2005; 

Eriksson 2005, 2009). The literature describing refining processes is comprehensive (Hill 

et al. 1979, 1993; Johansson et al. 1980; Dahlqvist and Ferrari 1981; Oksum 1983; 

Honkasalo et al. 1989; Bengtsson et al. 2021).  

In this paper the authors combine the two different classes:  

1) Model-driven soft sensors (“white-box” models - phenomenological knowledge about 

the process background (Karlström et al. 2008; Karlström and Eriksson 2014a,b,c,d); and  

2) Data-driven soft sensors (black-box models - based on empirical observations of the 

process (Karlström et al. 2015b, 2016a,b; Karlström and Hill 2017a,b,c, 2018b; Karlström 

et al. 2018a,d).  

There are many combinations of the two classes often referred to as hybrid models. 

In this paper they are referred to as grey-box models according to the terminology 

presented by Bohlin (2006). 

As described by Karlström et al. (2017a,b,c), both external variables (specific 

energy, dilution water feed rates, plate gaps, and amount of sawmill chips) and internal 

variables (temperature profile, refining zone consistencies, and fiber residence time, etc.) 

can be considered as predictors when modeling pulp properties in commercial full-scale 

CTMP (Chemi Thermo Mechanical Pulping) production lines. The problem, however, is 

the measurement accuracy in the pulp devices. This is nothing new, as noted by Ferritius 

et al. (2018) in another format “the assumption that coarseness is constant for all particles, 

as well as the arithmetic average, may lead to erroneous conclusions in real life as well as 

in simulations when used as a measure of the number of long fibres”. In the absence of 

other more reliable pulp property measurements, the measured shives(wide) and fiber 

length provided by the pulp device are still used in this article, which calls for analysis of 

a huge amount of data. 

One important issue discussed by Bengtsson et al. (2021), was that the use of 

internal and/or external variables in serially linked refining zones that can introduce 

collinearities. This is not a problem if a model-driven soft sensor model is available on-

line, as the estimated internal variables are changed simultaneously when the external 

variables are changed. However, when changing specific external variables (such as plate 

gaps or dilution waters added to each refining zone) in data-driven soft sensors, other 

external variables (such as specific energy) are also affected. This prevents the use of the 

data-driven soft sensor as a standalone estimator. The idea presented in this article is to 

highlight this conceptual dilemma and start to analyze both external and internal variables 

as predictors. It is of special interest to consider the motor load split between the two 

refining zones in the CD-refiner in terms of the specific energy related to the flat zone (FZ) 

and the conical zone (CD), respectively. The temperature profiles in the FZ and CD as 

predictors will also be analyzed. To estimate shives(wide) and fiber length, the data-driven 

dynamic soft sensors derived in this article are based on a time-invariant linear system 

approach and specifically an AutoRegressive eXogenous (ARX) structure (Ljung 1997).  
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EXPERIMENTAL 
 

CD-82 Refiner 
This section covers the fundamental issues in how complex data sets from a full-

scale CTMP production line can be used when modeling pulp and handsheet properties. 

The production line consists of an RGP82CD (Valmet, Sundsvall, Sweden) with three 

small 6 MW refiners (RLP54) in parallel. The CD refiner consists of two serially linked 

refining zones called the flat zone (FZ) and the conical zone (CD), see Fig. 1. In each zone, 

sensor arrays with eight temperature sensors have been mounted to measure the entire 

temperature profiles (Karlström and Hill 2017a, 2017b, 2017c). 

 
Fig. 1. A schematic drawing of a CD82 refiner. The vertical flat zone (FZ) is directly linked to the 
conical zone (CD) via an expanding point.   

 

Each temperature in Fig. 1 can be seen as an internal variable that is measured 

together with traditional process variables (external variables), such as production rate, 

dilution water flows, motor load, and plate gaps, between refining segments. These process 

variables constitute the inputs to a physical non-linear model, which the authors call the 

model-driven soft sensor, which is schematically described in Fig. 2. The model-driven 

soft sensor was developed to combine information about the fast dynamics in the refining 

zone (ranging from 0.5 to 1 s) with the slower actuator dynamics for plate gap changes and 

the overall dominant dynamics in the inlet and outlet piping. When running such models 

in real time, it is important to describe the dynamics at different production levels with 

varying process conditions to cope with the non-linearities in the process (Karlström and 

Eriksson 2014a,b,c,d) provide details). The model-driven soft sensor in Fig. 2 provides 

outputs that are controlled using TCtrl (maximum temperature control in FZ and CD) by 

manipulating the production and CCtrl (consistency control in FZ and CD) where the 

dilution water feed rates are controlled to each refining zone (Karlström et al. 2022). As 

can be seen in Fig. 2, the motor load split is available from the non-linear model, and this 

makes it possible to control the specific energy separately in each refining zone. That 

option has not been used so far, but in future applications two new concepts will be 

highlighted (Fig. 2), viz. ECtrl (specific energy control in FZ and CD) and QCtrl (quality 

control out from the CD-refiner), which constitutes the means in future research activities 

to derive a complete refining soft sensor concept.  

The purpose of this paper was to develop a data-driven soft sensor that estimates 

the pulp properties shives(wide) and fiber length. Of course, the set of pulp properties can 
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be expanded to include most of the fractions achieved from pulp sampling devices 

(positioned after the latency chest). However, this article focuses on a subset of all possible 

input candidates (predictors). 

 
 
Fig. 2. The soft sensor concept includes one block for the non-linear model based on first 
principles (model-driven soft sensor) and one for the pulp property models (data-driven soft 
sensor). In this set up, the data-driven soft sensor is based on an ARX-structure. 

 

Input Candidates 
Together, the model-driven soft sensor and the data-driven soft sensor constitute a 

“grey-box modeling” concept according to Bohlin (2006). In process modelling, 

knowledge of the process under consideration is typically partial with significant unknown 

inputs (disturbances) to the model. Disturbances militate against the desirable trait of model 

reproducibility. "Grey-box" identification can assist, in these circumstances, by taking 

advantage of the two sources of information that may be available: any invariant prior 

knowledge and response data from experiments.” Several inputs must be considered, 

especially the input candidates to the data-driven soft sensors.  

As indicated in Fig. 2, the model-driven soft sensor provides several predictors
ˆ ( )X t , such as  

• temperature profiles (> 20 variables); 

• consistency profiles (> 20 variables); 

• backwards and forward flowing steam (> 20 variables); 

• water content profiles (> 20 variables); 

• forces on bars (> 20 variables); 

• defibration and thermodynamical work in each refining zone (> 4 variables). 
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These predictors can be used together with traditional external variables such as 

production and motor load. Karlström and Hill (2017a,b,c) provide a deeper analysis. If 

more than 100 input candidates are available as indicated above and five of them are 

chosen, it was formerly necessary to consider more than 75 million combinations 

(Bengtsson et al. 2019). This, of course, is a huge number of combinations to test and is 

impossible to handle practically. Therefore, only a fraction of all possible input candidates 

were analyzed.  

As stated by Karlström et al. (2020), internal and external variables in serially 

linked refining zones can introduce (larger or smaller) collinearities between the inputs. 

This is a drawback for all data-driven soft sensors if the aim is to derive “pure” standalone 

estimators for pulp properties. This statement is most easily explained by an example: 

Consider a change in the plate gap in the FZ. This directly affects the specific energy, which 

most often is also an input in soft sensors.  

To analyze and detect multicollinearities the Variance Inflation Factors (VIF) will 

be used, that is, 
 
 

𝑉𝐼𝐹𝑘 =
1

1−R𝑘
2          (1) 

 

where R𝑘
2  corresponds to the coefficient of determination obtained by regressing the kth 

inputs on the remaining inputs, i.e., VIF quantify how much the variance is inflated. A VIFk 

= 1 means that there is no linear correlation between the kth input and the other remaining 

inputs. If VIFk > 4, a general rule is that further analysis should be performed, while VIFk 

> 10 indicates serious multicollinearities, which may call for further analysis and perhaps 

a modified set of inputs (Belsley et al. 1980). In serially linked processes, such as the one 

studied in this article, the collinearities occur between some of the internal variables which 

means that several aspects must be analyzed. Further discussion is provided in the 

Appendix. In this article, the authors primarily focus on the external variables as they 

introduce fewer collinearities.  

If the model-driven soft sensor is available, then data-driven soft sensors can be 

improved by including some linear independent internal variables. The most obvious 

external variables were focused; specific energy (Spe (kWh/T)), dilution water feed rate 

(dilFZ, dilCD (L/min)), plate gaps (gapFZ, gapCD (mm)), and amount of sawmill chips 

(ChipQ (%)). As internal variables, the initial temperature in the FZ (Tinit (degC)), the 

maximum temperature in the FZ (TmaxFZ (degC)), and the periphery temperature in the 

conical zone (TCDper (degC)) are included to minimize the risk of introducing 

collinearities between the predictors. When appropriate, two items are introduced: 1)SpeFZ 

and SpeCD, i.e., the specific energy related to each refining zone, and 2) the complete set 

of the most requested internal states such as the consistencies and fiber residence time in 

each zone beside two backward flowing steam velocities. The idea is to show how to use 

specific internal variables available from the motor-driven soft sensor. 

 

Methodology 
In terms of the data-driven soft sensor concept, a dynamic model approach based 

on primarily an AutoRegressive eXogenous (ARX) structure was used. 

Consider the system description in Fig. 3 The input vector u(t) represents the 

external variables, such as production, the plate gaps and dilution water feed rates to the 

flat zone and conical zone, while vector x(t) represents the internal variables, such as 

refining zone temperatures, consistencies, and fiber residence times. 
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Fig. 3. Illustration of modeling approaches: u(t) is the basic input vector, y(t) is the output vector, 
and x(t) is a vector of internal states 

 

Hence, from a system identification perspective, the main input vector will be 

ux(t)={u(t),x(t)}. The focus is on a modeling and verification approach using 

AutoRegressive eXogenous (ARX) models, as outlined by Ljung (1999). The process 

output y(t) that is influenced by i different inputs, (u1x(t),u2x(t),… uix(t)), can be written in 

the following form, 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)k kn n

x i ixy t A q q B q u t q B q u t e t
- -

= + + +L     (2)
 

where A and Bi are polynomials in the shift operator q and e(t) is a white noise term, i.e., a 

direct error in the difference equation. To fully understand Eq. 2, the delay operator is also 

included, as the dynamics (from u to y) sometimes contain a delay of nk samples. See Ljung 

(1999) for details. However, the sampling in u(t) is much faster compared with the 

sampling in y(t), which means that the delay can be ignored. 

The ARX model in Eq. 2 describes both the system dynamics and noise properties 

using the same set of poles. The output y(t) corresponds to the pulp property vector 

described by, e.g., shives(wide) and fiber length.  

All model parameters to be identified can be gathered in a column vector (see Eq. 

3),
 

 

𝜃 = [𝑎1⋯𝑎𝑛𝑎  𝑏𝑛,1⋯𝑏𝑖,𝑛𝑏𝑖]
𝑇

                                                                                   
(3) 

where na, nb1,…, nbi are the order of the polynomials A, B1,…, Bn, respectively. In this case 

the polynomials A has the form: 

1 2

1 2( ) 1                             (4)a

a

n

nA q a q a q a q
-- -= + + + +L        (4) 

The parameters of vector θ are determined using model prediction errors that are 

taken as the difference between the predicted outputs, often denoted ŷ, and the measured 

output sequence ym. These are sampled together with the inputs when acquiring data for 

the identification procedure. A prediction error norm, for example is Eq. 5, 

( ) ( ) ( )( )
22

1 1

1 1 1 1
ˆ            (5)

2 2

N N

N mt t
V t y t y t

N N
e

= =
= = -å å

     (5)
 

will be minimized and, obviously, a small value of VN should correspond to a model with 

high accuracy in the predictions. As indicated in Fig. 3, the box labeled refining model 

includes both information from the flat zone and the conical zone when estimating the pulp 

properties.  
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Time Variant System 
Large data sets are important when analyzing industrial unit operations. In this 

article, the process data from the refiner comes from two periods of more than A) 800 h for 

training the models and B) 1400 h used as a validation set. These time series are rather 

reliable from a measurement perspective and comprise a sampled period with few stops. 

The fiber residence time inside the refining zone is about one second. It is possible to follow 

this resolution by measuring the temperature profile inside the refining zones. The actuators 

can respond on a 30 s basis, which means that this dynamic sets the limit for how to design 

TCtrl and CCtrl. Nevertheless, all data sampled from the refining process in this article 

have a sampling rate of 6 s. 

One obstacle, which is related to the pulp property measurement device in Fig. 4, 

is that the sampling rate is non-equidistant within an interval of 15 to 20 min. This causes 

uncertain sampling delays that must be considered in combination with the uncertainties in 

the measurement device itself. To overcome some of the problems, the signal can be 

resampled by using interpolation. This introduces, however, an estimate based on a 

assumed equidistant sampling rate. Therefore, an alternative is to use the ARMAX 

structure where the equation error is introduced as a moving average of white noise, i.e., 

instead of e(t) in Eq. 2, i.e., 

( ) ( )1 2

1 2( ) (1 )                (6)c

c

n

nC q e t c q c q c q e t
-- -= + + + +L

     (6)
 

is not an option, see further Ljung (1999). 

An additional shortcoming, when using the measurement device after the latency 

chest in Fig. 4 to find proper models, is that the latency chest itself introduces an 

uncertainty.  

 

 
 

Fig. 4. Schematic drawing, showing the sampling points for blow-line samples and the pulp 
property measurements after the latency chest 

 

It can be seen as a time-variant system serially linked to the refiner and all these 

challenges introduce many uncertainties and we cannot expect to get a perfect model fit 

with this set up (Sund et al. 2021). However, known uncertainties must be suppressed. In 

this paper the method is straightforward. The idea is to reject all data where the outputs to 

be predicted are constant over a longer period than 2000 to 6000 samples, which 

corresponds to about 3 to 10 h. This precaution is taken as measuring equipment faults may 

occur during certain periods. The time series is divided into training and validation sets, 

the parameters are estimated using the training set, and some of the model alternatives are 

compared on the validation set using the coefficient of determination (R2): 
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     (7)
 

Here represents the sum of the squared residuals from the regression while 

 denotes the sum of the squared differences from the mean of the dependent 

variable for n observations (Draper and Smith 1998).  

Finally, because the goal is to derive an ARX model that describes the process 

before the latency chest, i.e., in the blow-line, the low-frequency gains (ki) obtained from 

the dynamic models, 

( )b / 1          1, ,  ;  1, ,      (8)
j j ji i m b ak a i n m n= + = =å K K

     (8)
 

will be used. Here, nb represents the number of predictors and j represents the pulp property 

studied while na corresponds to the size of the A-polynomial in Eq. 4. 

Thereby, the latency chest dynamics can be suppressed. In other words, the 

dynamics in the latency chest as well as the dynamics in the measurement device and the 

noise sequence are ignored. This also makes it possible to compare the steady state gains 

with the parameters in the multivariate static models derived by Karlström and Hill 

(2017a,b,c). 

 

 

RESULTS AND DISCUSSION 
 

 This section covers the results obtained when estimating pulp properties associated 

with the block describing the data-driven soft sensor in Fig. 2. The focus will be to derive 

soft sensors with a minimized set of linear independent predictors. As indicated in the 

Appendix, the multicollinearities, which are detected by using the Variance Inflation 

Factors (VIF) in Eq. 1, are minimized if the external variables are used as predictors. If 

internal variables are included as predictors, then it is important to verify low 

interdependencies between the predictors, as outlined in the Appendix. In this section it is 

shown that some internal variables are interesting to include as predictors. This does not 

mean that the model-driven soft sensor must be included in the model, as the temperature 

profile can be used without the non-linear model in Fig. 2. In contrast, if consistencies 

and/or for instance the specific energy split between FZ and CD will be used to improve 

the model accuracy, then internal variables derived from the model-driven soft sensor must 

be included as well. 

There is motivation to use low-frequency gains in modeling: As concluded by 

Karlström et al. (2020), the model accuracy for freeness (i.e., the total volume of water 

discharged from a side orifice of a specific configuration while the pulp suspension drains 

freely under gravity) is unfortunately not good enough, as the measures need repeatable 

bias compensations after comparison with laboratory tests. This procedure does not ensure 

the accuracy in the measurement of the freeness. Although such changes occurred during 

the period described in Karlström et al. (2020), the estimation of freeness failed 

completely. This might be the most important contribution in this article series, because 

freeness is often used by operators as a measure for manual process control. Therefore, this 

paper focused on shives(wide) and fiber length as the main pulp properties described by 

Eq. 2. The methodology is outlined above and a deeper discussion of outlier rejection, etc. 

is given by Karlström et al. (2020).  

( ) ( )
2 22 ˆ1      1,   ,           (7)i iR y y y y i n= - - - =å å K

( )
2

ˆ
iy y-å

( )
2

iy y-å
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Karlström et al. (2020) showed that the filtering of the estimates from the dynamic 

model was considerable because of the dynamics in the latency chest and “sluggish” 

sampling in the pulp measurement device corresponds to about 30 to 40 min. The fiber 

residence time is approximately one second in the refiner, while normal control actions, 

related to dynamics in actuators etc., correspond to time constants of about 2 to 3 min 

(Karlström et al. 2020). All this means that the sampling device after the latency chest is 

inappropriate for use for control actions. This is strengthened by studying Fig. 5, where the 

response from a dynamic model (red line) is far from the dynamics in the refiner itself.  

Note that in all figures below, the detrended process values (mean values are 

removed) are shown instead of the actual measurements and estimates. 

 

 
Fig. 5. Close-up of a response in shives(wide) caused by changes in the production. The red line 
corresponds to the dynamic model responses (including dynamics in latency chest and 
measurement device). The blue line represents the static model response for two sets of 
predictors, see legend in a) and b). The black line represents the measured pulp property after 
the latency chest. 

 

Through using the low-frequency gains (see response in Fig. 5a (blue line)), the 

time constant and the delays in the latency chest and measurement device can be ignored. 

A closer analysis indicates that direction-dependent dynamics were present. The settling 

time varied between 90 to 120 min. In the main text, the time constant is assumed to be 30 

to 40 min, which is a conservative assumption motivated when the latency chest volume is 

less than 50% of its capacity. It is also important to mention that the consistency in the 

latency chest can vary, which of course affects the measurement accuracy as well. This is 

unfortunately often overlooked in the literature. It can be concluded that this introduces a 
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tool for pulp quality control that compares the estimates with samples taken directly in the 

blow-line. It is also worth mentioning that additional predictors, in terms of internal 

variables in Fig. 5b, normally add information about overshoots in the responses. 

 

Training Sets  
The principles used when training models were outlined by Karlström et al. (2020), 

and here the focus is on the external inputs: specific energy (Spe), the amount of sawmill 

chips (ChipQ), plate gaps (gapFZ, gapCD), and dilution water added to each refining zone 

(dilFZ, dilCD). The internal variables, inlet temperature in FZ (Tinit), maximum 

temperature in FZ (TmaxFZ), periphery temperature in CD (TCD(per)), and the specific 

energy in the FZ and CD, will be studied as well.  

Karlström et al. (2020) concluded that it is important to include the total specific 

energy (Spe) and the amount of sawmill chips (ChipQ) in all models for shives(wide) and 

fiber length. This assumption is used in this paper as well although this statement is not 

obvious when studying Table 1.  

 

Table 1. Mean Square Error Ratios for Different Models for Shives(wide) and 
Fiber Length 

 Shives(wide) = f(Predictors) 

MSE/max 
(MSE(SpE)) 

SpE SpE 
(FZ) 

SpE 
(CD) 

dilfz dilcd gapfz  gapcd Chip 
Q 

Tinit Tmax 
(FZ) 

TCD 
(periphery) 

1 X           

 X       X    

0.993  X X     X    

0.97 X   X  X  X    

0.97  X X X X   X    

0.912 X     X X X  X X 

0.899 X   X X X X X    

0.917 X   X X X X X X X X 

0.919  X X X X X X X X X X 

 Shives(wide) = f(Predictors) 

MSE/max 
(MSE(SpE)) 

SpE SpE 
(FZ) 

SpE 
(CD) 

dilfz dilcd gapfz  gapcd Chip 
Q 

Tinit Tmax 
(FZ) 

TCD 
(periphery) 

1 X           

0.985 X       X    

0.934  X X     X    

0.887 X   X  X  X    

0.842  X X X X   X    

0.836 X     X X X    

0.844 X   X X X X X    

0.826 X   X X X X X X X X 

0.821  X X X X X X X X X X 
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As can be seen in Table 1, a complete analysis of the impact from each predictor 

was not performed in this paper, as the aim was to obtain a good enough model. Moreover, 

only minor improvements were obtained when the predictors SpE(FZ) and SpE(CD) were 

introduced instead of the total specific energy (SpE). However, this was true for this time 

series, where the external variables in the refining zone (such as dilution water feed rates 

and plate gaps in the FZ and CD) were not changed in the opposite direction or individually 

manipulated. Such situations can occur when the production is maximized or when the 

refining segments are not responding appropriately close to the end of the life cycle. To 

illustrate that, an extended time series of fiber length is shown, where the last 200 h before 

a plate change are included (Fig. 6). 

 

 
Fig. 6. The measured and estimated fiber length using the low-frequency gains outlined in Eq. 8. 
a) Predictors used are specific energy and chip quality. b) Predictors used are specific energy in 
each refining zone and chip quality.  

 

It is interesting to note that the same conclusion cannot be drawn by studying only 

shives(wide). If the plate gaps in the flat zone and conical zone are kept relatively stable 

over time this is a minor problem. Therefore, it is preferred to use the total specific energy 

when estimating both fiber length and shives(wide). Nevertheless, as seen in Table 1, the 

best fit when modeling shives(wide) was obtained when external variables were used as 

predictors while a mix of external and internal variables is desirable when estimating the 

fiber length. Other internal variables such as consistencies are not considered in this paper, 

as the dilution water and consistency are strongly correlated to each other. 
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Further model improvements seem to be difficult to obtain with this setup of 

predictors, and it can be concluded that the model responses in Fig. 7, at least, follow the 

trends in the time series.  

The ARX-model parameters for the training set are given in Table 2 together with 

two new sets of ARX-model parameters for both shives(wide) and fiber length. The latter 

set was thereby used for comparison of both the original parameters and the validation sets. 

 

 
 
Fig. 7. a) Measured and estimated fiber length using the low-frequency gains outlined in Eq. 8. 
Predictors used are given in the legend. b) Measured and estimated shives(wide) where the 
predictors are the same as in part b). 

 

In general, any models like those in Table 2 are troublesome to use as standalone 

models due to interconnections between the predictors, see further the discussion in the 

appendix, and other issues that cause several challenges related to process non-linearities. 

As an example, consider the set of parameters in Case G, in Table 2.  

In real life, a reduced plate gap in CD will most likely reduce the fiber length, while 

an increased plate gap can hardly increase the fiber length. This is often called direction-

dependent dynamics, which is impossible to follow by only studying changes in the 

predictors. Hence, in this case the parameter sign is irrelevant, as it has no meaning in a 

“standalone”-perspective. At the same time, a reduced plate gap in CD will increase the 

specific energy, while an increased plate gap will reduce the specific energy. In other 

words, when it comes to specific energy dynamics, the process behavior can be described 

by a time-invariant linear system. In point, these two predictors are interconnected, which 
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makes it difficult to use the model as a standalone model. Similar behavior occurs changing 

the dilution water feed rates are changed, resulting in a linear approximation of the non-

linear process behavior. Therefore, it is important to state that the models in Table 2 do not 

necessarily give the best fit. Instead, the concept requires both a model- and data- driven 

concept to provide models that are good enough for the validation procedure. Note that the 

parameters shown in Table 2 correspond to the complete training set, i.e., 800 h. However, 

it is possible in some cases to limit the training set by using a cumulative method, where 

the time series is divided into n cumulative frames, where the parameter stability is 

analyzed in each frame (see Fig 8). 
 

Table 2. Estimated Low-frequency Gain Parameters for Shives(wide) and Fiber 
Length*  

Model Parameters 

 Training Sets 

Parameters Shives(wide) Fiber Length 

in the ARX-
Model 

Based on 
Training Set 

Based on 
Validation Set 

Based on 
Training Set 

Based on 
Validation Set 

 CaseA CaseB CaseC CaseD CaseE CaseF CaseG CaseH 

Specific 
energy -0.1727 -0.1491 -0.3399 -0.3405 -0.0012 -0.00110 

-
0.00061 -0.00049 

Dilution W 
(FZ) 0.154 0.5273 0.0670 0.1360 -0.0023 -0.00075 

-
0.00100 -0.00008 

Dilution W 
(CD) -0.0388 0.1518 -0.0733 -0.0259 -0.0021 -0.00085 

-
0.00044 0.00002 

Plate gap (FZ) 47.9711 25.244 17.0492 27.2685 0.0459 0.05120 
-

0.30680 -0.21970 

Plate gap 
(CD) 93.2079 103.456 85.0052 86.1850 -0.0967 -0.02620 0.28760 0.26560 

Saw mill 
chips -0.1643 -0.124 -0.6054 -0.5750 0.0015 0.00130 0.00088 0.00130 

Temp (initFZ)  -2.2505  -0,0475  -0.00300  0.00640 

Temp 
(maxFZ)  -2.2363  -0.5918  -0.01220  -0.00780 

Temp 
(peripheryCD)  -2.9154  -0.5863  0.00160  0.00040 

*Based on the inputs: ux1 = [Spe, dilFZ, dilCD, gapFZ, gapCD, ChipQ] and ux2 = [Spe, 
dilFZ, dilCD, Tinit TmaxFZ TCD(per) gapFZ, gapCD, ChipQ], respectively  
 

Some of the parameters seemed to converge when the number of frames reached 

30, which corresponds to about 240 h while the parameters representing the dilution water 

feed rate are more cumbersome from a stability perspective.  

When studying Fig. 7, it is obvious that both fiber length and shives(wide) had 

measurement uncertainties that can be cumbersome to include in a modeling procedure. To 

understand such uncertainties in the pulp property measurements, it is interesting to analyze 

R2 versus the window size of a moving average filter applied on model inputs and outputs 

(Ljung 1999). As can be seen in Fig. 9, a window size of about 4000 samples seemed to be 

the best for the two sets of predictors in Table 2, although the absolute values for the 

coefficient of determinations are questionable. It is noteworthy, however, that the 

introduction of internal states seemed to improve the prediction, as discussed below. 
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Fig. 8. Model parameters (DC gains) for fiber length related to SpE (a), gapFZ (b), gapCD (b), 
dilFZ (c), dilCD (c), chipquality (d) versus a consecutively increased data set based on the entire set 
of data (800 h) 

 

 
 

Fig. 9. The coefficient of determination for the estimated shives(wide) using three different sets of 
predictors versus a varying window size. Solid: ux = [SpE, dilFZ, dilCD, gapFZ, gapCD, chipquality]. 
Dached: ux = [SpE, dilFZ, dilCD, Tinit, TmaxFZ, TCD (per), gapFZ, gapCD, chipquality] 
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Model Validation 
It is important to choose the size of the time series in a proper way to cover enough 

process changes in all predictors. In this paper, a 1400-h validation set was studied.  

To interpret the validation of the responses, a window size of 4000 samples (i.e., 

about 7 h) was applied both for shives(wide) and fiber length to describe the uncertainties 

in the pulp property measurements.  

In Figs. 10 and 11, where the models described in Table 2 were visualized before 

and after filtering, it is clear that most of the dynamics could be captured. It is also 

interesting to see in Figs. 10 and 11 that the original models derived from the training set 

(Case A and Case F) seemed to follow the filtered measurements quite well. Note, when 

visualizing the response in shives(wide), the predictors used were based on the external 

variables, Fig. 10, while the predictors were extended to comprise both external and 

internal variables when estimating fiber length (see Fig. 11). 

It is obvious when studying the figures that all dynamics were not covered by the 

models. This indicates that the number of process variables in the prediction vector should 

be increased further. This will be analyzed further in the Outlook section below.  

 

 
 

Fig. 10. a) Measured and validated shives(wide) using only external variables as model inputs. 
Red response represents the model based on the original training set, while the green refers to a 
new model derived by using the validation time series as a training set, as shown in Table 2. b) 
Filtered measurement of shives(wide) together with modelled shives(wide) to visualize the noise 
present in the measurement. 
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Fig. 11. a) Measured and validated fiber length using external and internal variables as model 
inputs. The response in red represents the model based on the original training set, while the 
response in green refers to a new model derived by using the validation time series as a training 
set, as shown in Table 2. b) Filtered measurement of fiber length together with modelled fiber 
length. 

 

Outlook  
As indicated above, it is important to choose the best possible set of predictors. A 

combination of external and internal variables seems to be favorable to use, at least when 

applying an R2-procedure, as outlined above (see Figs. 9 through 11). One key question is 

whether the model can be improved by introducing even more internal variables in the 

prediction vector in Table 2. The answer is yes. However, that requires access to an on-line 

motor-driven soft sensor, as described in Fig. 2.  

As can be seen in Fig. 12, additional internal variables (as consistencies (CFZ, 

CCD) and fiber residence times (ResFZ, ResCD) together with backward flowing steam 

velocities) improve the coefficient of determination to a more expected level. That is, two 

elements of the steam velocity vector are also included. The vector consists of eight 

elements, where the 5th and the last one before the CD-zone are considered. From a 

statistical perspective, this is promising, as the model must cope with several non-linear 

process changes to ensure robustness and to confirm that the models are useful over 

prolonged periods for on-line control applications.  

As shown in Fig. 13, the estimated shives(wide) seem reliable enough for 

applications, even though the R2 is slightly reduced for the validation set (see Fig. 14). 

Note, in this case that the absolute values of the estimated shives are included instead of 
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the detrended values, which are commonly used when modeling processes in general. This 

opens for further possibilities when visualizing the property for process operators in future 

control applications. 

 

 
 

Fig. 12. The coefficient of determination for the estimated shives(wide) using three different sets 
of predictors versus a varying window size. Solid: ux = [SpE,dilFZ,dilCD,gapFZ,gapCD, chipquality]. 
Dash dot: ux = [SpE,dilFZ,dilCD,Tinit,TmaxFZ,TCD(per),gapFZ,gapCD,chipquality,CFZ,CCD, 
ResFZ,ResCD, SteamFZ] 
 

 
 

Fig. 13. Filtered measures of shives(wide) and corresponding training and validation sets. The 
predictor vector used; ux = [SpE,dilFZ,dilCD,Tinit,TmaxFZ,TCD(per),gapFZ,gapCD,chipquality, 
CFZ,CCD,ResFZ,ResCD, SteamFZ]. 
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Fig. 14. The coefficient of determination for the estimated shives(wide) where ux = 
[SpE,dilFZ,dilCD,Tinit,TmaxFZ,TCD(per), 
gapFZ,gapCD,chipquality,CFZ,CCD,ResFZ,ResCD,SteamFZ] 
Solid line corresponds to the training set and the dotted line refers to the validation set 

 
 

CONCLUSIONS 
 

1. This study shows that it is possible to estimate pulp properties to foresee the variations 

directly in the blow-line by using a system identification approach based on an ARX 

(Auto-Regressive eXogenous model) concept. 

2. This article considered the complete dynamics in the CTMP production line, including 

the latency chest and delays in the pulp property measurement unit. This approach is 

suitable for analyzing larger data sets over long time periods. When pulp samples are 

taken from the blow-line, then the analysis, based on a multivariate static modeling 

approach, is primarily suitable for small data sets. 

3. Through introducing primarily external variables, such as specific energy, dilution 

water feed rates, plate gaps, in each zone together with the sawmill chip content as 

inputs to the models, a fit to estimation data of about 70 to 80% prediction focus can 

be reached. The predictions are reliable for both shives(wide) and fiber length, which 

indicates that it should be possible to study other pulp properties as well. 

4. Findings of this work also indicate how fast control concepts can be introduced on-line 

by using the derived low-frequency gains. Thereby, the pulp property can be derived 

every second compared with the current practice of using pulp measurement devices, 

which are often positioned after the latency chest, which results in a long response time 

and slow sampling rate of ≥ 30 to 40 min.  

5. Because of the results presented here, it is interesting to link the results to former results 

based on handsheet properties reported the authors’ previous work, primarily sheet 

density, tensile index, Scott-Bond, and Z-strength. 
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APPENDIX 
 

Consider Table A1, where five different sets of VIF are given. These sets are 

derived using the time series presented by Karlström et al. (2020). It is obvious that the use 

of both the consistencies (CFZ and CCD) and the fiber residence times (RESFZ and 

RESCD) in Case 1 will result in too high VIFs. From a modeling perspective, it is tempting 

to reject some of the collinear internal variables, e.g., CCD and/or RESCD, to considerably 

reduce the VIF (see Case 4 in Table A1). However, this limits the possibility to control the 

pulp property by changing the consistency and the fiber residence time in the conical zone 

at different production rates. Moreover, consider Table A2, where a new set of data is used. 

It is obvious that the conclusions above can be questioned, as the collinearities in the 

consistencies are reduced significantly, statistically speaking. This is a consequence of 

individual excitation in CD that is more pronounced compared with the changes in the time 

series in Table A1. These examples indicate that the analysis of collinearities in real 

processes is quite complex and should be handled with care. This is especially important 

when the test procedure does not contain, e.g., specified step changes to suppress the 

impact from different kinds of collinearities.  

 

Table A1. Test series A: Five Different Sets of Variance Inflated Factors for the 
Different Inputs 

VIF Mload prod CFZ CCD RES 
FZ 

RES 
CD 

Chip 
Q 

Tmax 
FZ 

Tmax 
CD 

TCD 

(periphery) 
Case1 8.2 44.8 14.7 16.9 225.8 166.7 1.2 4.2 2.2 1.8 

Case2 1.1 
 

11.6 11.8 
     

  

Case3 2.8 
 

1.2 
 

95.4 90.3 
   

  

Case4 2.7 
 

1.2 
 

2.5 
    

  

Case5 6.5 3.2 1.3       1.1 3.6 1.6 1.7 

Here, all process variables are described in the main text except TmaxFZ and TCD (periphery), 
which are the temperatures close to the periphery rim of the FZ- and CD zone segments; 
TmaxCD corresponds to the first position in the CD-zone. 
  
Table A2. Test series B: Five Different Sets of Variance Inflated Factors for the 
Different Inputs 

VIF Mload prod CFZ CCD RESFZ RESCD ChipQ Tmax 
FZ 

Tmax 
CD 

TCD 

(periphery) 
Case1 8.8 65.8 1.4 1.5 297.2 142.9 1.6 7.8 4.5 1.3 

Case2 1.,0 
 

1.4 1.4 
     

  

Case3 2.7 
 

1.0 
 

108.8 103.5 
   

  

Case4 2.6 
 

1.0 
 

2.6 
    

  

Case5 8.1 4.3 1.0       1.5 6.4 4.1 1.3 

Here, all process variables are described in the main text except TmaxFZ and TCD (periphery), 
which are the temperatures close to the periphery rim of the FZ- and CD zone segments; 
TmaxCD corresponds to the first position in the CD-zone. 
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To further clarify the problem when using VIF in more complex systems, assume 

that the fiber residence times in the FZ and CD are primarily affected by the production 

rate and the plate gaps. If the plate gaps are assumed to be unchanged, then the production 

rate will affect both residence times in the FZ and CD, i.e., an interdependency between 

the inputs exists. 

Contrastingly, a completely new situation occurs at stable production rate and 

variable plate gaps. Suppose that the plate gap in the FZ (or CD) is changed. This results 

in an unchanged fiber residence time in the CD (or FZ), i.e., no linear correlation between 

the two refining zones exists. These two examples show that the collinearities are 

dependent on how the process is manipulated. A similar situation occurs when changing 

the dilution water feed rate to the FZ as such changes affect the entire consistency profile 

in both the FZ and CD, while a change in the dilution water feed rate to the CD-zone does 

not affect the consistency in the FZ.  

However, if the non-linear model in Fig. 2 is available on-line the situation 

described above is not a problem because the estimated internal variables are changed 

simultaneously when changing production, dilution water feed rates and plate gaps etc. In 

contrast, if the empirical model is assumed to be a standalone estimator for pulp properties, 

the collinear predictors must be simultaneously changed. This can also be troublesome to 

perform when external variables are used as predictors.  

To end this discussion, the authors include the VIFs for two sets of predictors based 

on the time series in Table A2. The first set includes the dominant internal variables, 

consistency and fiber residence time, and the second set consists primarily of the external 

variables represented by dilution water added to each refining zone together with the plate 

gaps, see Table A3.  

 

Table A3. Two Different Sets of Variance Inflated Factors for the Different Inputs 
Represented by Internal and External Variables 

SpE CFZ CCD RESFZ RESCD ChipQ TmaxFZ TCD(periphery) 

5,6 1,4 1,5 173,0 131,0 1,5 5,7 1,3 

SpE dilfz dilcd gapfz gapcd ChipQ TmaxFZ TCD(periphery) 

1,6 1,9 1,4 1,7 1,9 1,2 2,3 1,6 

 
It is obvious that the use of external variables as predictors is slightly more 

favorable in terms of lower VIF when trying to select input candidates in models where 

low VIFs are requested. Especially, in the case that the consistencies in the FZ and CD are 

preferred as predictors, the fiber residence times can be replaced by the plate gaps in this 

example as the production is included indirectly via the specific energy. 

 


