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Taking the conventional drying process of Pinus sylvestris square wood 
with pith as the research material, based on the Back Propagation (BP) 
neural network algorithm, a model was constructed using the real-time 
online-measurement data. Softening treatment time and temperature, 
variable treatment time and temperature, initial moisture content of wood, 
and position of wood core and sapwood were used as model inputs. Wood 
drying rate and longitudinal cracking degree were used as outputs to 
indicate wood drying quality. The results showed that with a suitable model 
structure of 6-9-2 (input layer-hidden layer-output layer), the coefficient of 
determination R2 and mean square error of the test samples were 0.96, 
0.99, and 0.00605, respectively, indicating that the neural network model 
has good generalization ability. Compared with the experimental value, 
the predicted value basically conforms to the change law and size of the 
experimental value, and the error distribution is approximately 2%. This 
shows that the BP neural network model can simulate the drying rate and 
longitudinal cracking degree in the drying process and realize the 
prediction of the drying process. 
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INTRODUCTION 
 

The concept of an artificial neural network (ANN), which originated from bionic 

technology, involves a complex mathematical model composed of multiple nodes. An 

ANN can realize the rich processing requirements of large-scale data nonlinear processing, 

multi-thread logic recursion, self-detection, and self-learning ability. Especially in cases of 

some multi-condition nonlinear problems, ANN can provide better solutions. Unlike 

traditional regression analysis, neural networks do not need to define a linear or non-linear 

equation when analyzing data. Neural networks can automatically find patterns, as well as 

to learn and analyze them based on the details of the input data set. This makes the neural 

network show excellent performance on large-scale data sets, complex patterns, and non-

linear data (Fabijańska 2021). Therefore, it is widely used in biology, chemistry, 

environment, materials, medicine, and other research fields. 

Among various neural network structures, the Back Propagation (BP) neural 

network structure is a multilayer feedforward neural network trained according to the error 

back propagation algorithm. Through learning, analyzing, and modeling the input data of 

the neural network, it can achieve the simulation and analysis results of the drying process. 

The BP neural network was introduced into the conventional drying of wood to solve the 

complex non-linear problem in the drying process, and good application results have been 
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obtained in many applications. Avramidis and Iliadis (2005) used ANN technology to 

conduct research on the thermal conductivity of wood. Related work has been done for 

dielectric loss factor (Avramidis 2005), wood density (Iliadis et al. 2013), and wood heat 

flux under non-isothermal diffusion conditions (Cai and Chen 2005; Avramidis and Wu 

2007). The results show that ANN has strong simulation and prediction ability in the field 

of wood drying, and it can simulate the required results. Ceylan (2008) built an artificial 

neural network model using drying temperature, relative humidity, and drying time as input 

variables, and successfully predicted the moisture content of wood in the drying process. 

Wu and Avramidis (2006) established a neural network model with back-propagation 

algorithm and predicted the drying rate of wood. Fu (2020) established a prediction model 

to predict the elastic strain of birch discs during the drying process. In addition, neural 

networks are widely used in other areas of wood science, such as the identification of wood 

defects (Gao et al. 2022), tree species, and insect diseases (Huang et al. 2022). The above 

studies demonstrated the feasibility of neural networks for wood drying. 

Before conventional drying, the method of improving the drying quality through 

pretreatment is a common way to improve the drying quality in the initial stage of drying 

of large-section pine pith-containing square timber. The application of the setting 

technology (including wood softening, setting and balancing treatment) to the drying of the 

Pinus sylvestris can help to restrain the drying surface cracks and improve the drying speed. 

Because the application of setting technology in the drying of Pinus sylvestris is still in its 

initial stage, the ANN technology can be used to explore a reasonable drying process ratio 

with fewer experiments, and subsequent routine drying is of great significance. In this 

experiment, the BP artificial neural network was used. The steaming treatment time and 

temperature, set time, set temperature, initial moisture content of wood, and position of 

wood core and sapwood were used as model inputs, and the drying rate and longitudinal 

crack of wood were simulated. The relevant research results can provide a theoretical basis 

for the optimization of the drying process of Pinus sylvestris square timber. 

 

 
EXPERIMENTAL 
 
Materials 

A number of specimens with dimensions of 120 mm × 120 mm × 500 mm were 

processed from Mongolian pine with no defects. The absolute dry weighing method (Cai 

and Chen 2005) was used to measure the initial moisture content (MC) of the specimens. 

In this experiment, four similar test materials were taken from each group for each 

experiment, and the average value of the four groups of test materials was calculated to 

determine the experimental results of each group. In total, 28 wood samples were taken 

from seven groups in the experiment. 

 
Methods 
Drying process 

As the large section sawed timber can easily develop surface cracks, radial cracks, 

and other defects during the drying process, it is necessary to carry out pretreatment 

(softening, setting, and balancing) of the square timber of Mongolian pine before drying to 

reduce the occurrence of drying defects, and then carry out conventional drying treatment. 

The specific pretreatment process and conventional drying benchmarks are shown in 

Tables 1 and 2. 
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Table 1. Treatment Processes of Softening, Setting, and Balancing 

Pretreatment 
Process 

Saturated Moist Air Softening 
Treatment 

(Dry Bulb Temperature / Time) 

Set Processing 
(Dry Bulb Temperature / Ambient 

Humidity / Time) 

Control Group Not Processed Not Processed 

Process 1 90 °C / 12 h 120 °C / 30% / 24 h 

Process 2 90 °C / 12 h  115 °C / 30% / 24 h 

Process 3 95 °C / 12 h 120 °C / 30% / 18 h 

Process 4 90 °C / 12 h 120 °C / 30% / 18 h 

Process 5 90 °C / 18 h 120 °C / 30% / 24 h 

Process 6 90 °C / 24 h 120 °C / 30% / 24 h 

 
Table 2. Conventional Drying Benchmarks 

Time 
(h) 

Dry Bulb 
Temperature (°C ) 

Wet Bulb 
Temperature (°C) 

Relative 
Humidity (%) 

Equilibrium 
Moisture Content 

(%) 

0 85 85 100 24.5 

6 85 83 96 19.0 

12 85 82 92 16.0 

18 85 81 88 14.5 

24 85 80 84 12.5 

30 85 79 80 11.5 

36 85 78 77 11.0 

42 85 77 74 10.0 

48 85 76 71 9.5 

54 85 75 68 9.0 

60 85 74 65 8.5 

66 85 73 62 8.0 

72 85 72 59 7.5 

78 85 71 56 7.0 

84 85 70 54 6.5 

90 85 69 51 6.0 

 

Detection of drying rate and longitudinal crack degree 

The drying weight method was used to measure the MC at each stage (Fu 2019). 

The MC of the test piece was divided into 25 equal parts, as shown in Fig. 1. The initial 

average moisture content of the test material is calculated according to Eq. 1. 

 

 

(1) 

In Eq.1, MC denotes the average MC of 25 specimens, representing the estimated initial 

MC of the specimens (%); Gi is the initial weight of the ith fastest sample (g) and; Gio is the 

absolute dry weight of the ith fastest sample (g). 
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Fig. 1. Schematic diagram of decomposition of moisture content specimen 

 

Because the wood cracking is relatively complex, to quantify and represent it, the 

longitudinal cracking degree was used. The longitudinal cracking degree of the wood was 

used to indicate the cracking condition of the wood, which is the ratio of the longest 

longitudinal crack to the length of the wood. The surface crack length, width, and internal 

cracking degrees of the wood surface were determined. The cracks with a width less than 

2 mm or a length less than 10 mm were ignored. The cracks were less than 3 mm apart 

from each other and were calculated as a single crack. Then, the one with the highest length 

was selected to calculate the longitudinal cracking degree was selected as in Eq. 2 (Fu 

2017): 

 
       (2) 

      

In the Eq. 2, LS is the longitudinal crack degree (longitudinal crack length ratio) 

(%); Lmax denotes the maximum cracking (mm); and L0 is the length of wood (mm). 

 

Analysis method of artificial neural network model 

The BP neural network model used in this work was developed on the Python 

integrated development environment PyCharm based on the Python language, using a 

three-layer feedforward network structure (input layer, hidden layer, and output layer). The 

factors were not connected and interrelated, which can ensure that each input condition is 

independent of each other and ensures that the neural network structure can change the 

input conditions of one layer while other conditions can normally affect the results. The 

experimental data of wood drying were collected, and then the experimental input layer 

and output layer were determined, where the input layer is the steaming treatment time, 

steaming temperature, set time, set temperature, initial moisture content of wood, and the 

position of wood core and sapwood, and the output layer is wood drying rate and 

longitudinal cracking degree. The hidden layer was selected as a single multi-hidden layer 

in this work. Compared with an ordinary single hidden layer, it has a higher generalization 

ability and prediction accuracy. There are connections with neurons in adjacent layers, 

there is no connection between neurons in the same layer, and there is no feedback 

connection between neurons in each layer (Ozsahin and Murat 2018), which also ensures 

the independence of each variable. The input signal is forwarded from the input layer to 

the hidden layer. The data are processed by the function transformation in the hidden layer 
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and transmitted from the hidden layer node to the output layer. The data are finally 

processed in the output layer node to form the output data. Among them, all nodes in the 

hidden layer use the sigmoid transfer function (Eq. 3), and in the output layer, all nodes 

use the pureline linear transfer function: 

 

                                               (3) 

The loss function (Eq. 4) is a parameter that helps to optimize the neural network. 

Each neural network gives an output, and the loss can be calculated by matching the output 

with the target value. Through optimizing the parameters of the neural network to minimize 

the loss, it is a common method for training neural networks. The data are simulated 

through hidden layers with different numbers of neurons, and the loss function under the 

number of neurons is counted. At the beginning of training, the loss function decreases 

greatly with the increase of the number of neurons. When the number of neurons increases 

and the loss function does not decrease significantly, this number of neurons can be 

selected as the number of neurons used in this model. 

)1(log
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                                  (4) 

In Eq. 4, xi is actual value. 

The data obtained from the test were arranged in the order of test piece position, 

initial moisture content, steaming temperature, steaming time, set temperature, set time, 

drying rate, and longitudinal cracking degree. A total of four tests were carried out, with 

four specimens for each test, and five groups of data were collected for each specimen. The 

obtained data were randomly divided into training groups and test groups. Among them, 

60 data in the training group accounted for 75% of the total, and 20 in the test group 

accounts for 25% of the total. 

When training and validating a neural network, a large amount of data needs to be 

processed by the neural network. Different data have different numerical sizes and physical 

meanings. To make each input data have the same processing status, it is necessary to 

normalize the data. The normalized data can effectively prevent the adjustment of weights 

from entering the flat region of error. In addition, because the neurons of the BP neural 

network use the sigmoid transfer function, and the output value is between [0, 1], the output 

data also needs to be normalized (Chai 2018). 

Normalization processing formula (Eq. 5): 

                                                   (5) 

In the Eq. 5, X is the value after normalization of x; Xmax denotes the maximum value of x; 

and Xmin is the minimum value of x. 

The performance of the neural network is generally analyzed by means of the mean 

square error. A smaller mean square error between the test value and the predicted value 

results in a better forecast performance. At the same time, the coefficient of determination 

R2 is also used as an evaluation index for the performance of the neural network. The 

learning efficiency of this experiment was set to 0.01 and the mean square error was 

calculated using Eq. 6 as follows: 
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                                 (6) 

In Eq. 6, n is the number of groups; xi is actual value; and yi denotes the predicted value of 

the neural network. 

 
 
RESULTS AND DISCUSSION 

 
Determination of the Number of Neurons 

The determination of the neurons number has an intuitive impact on the simulation 

effect of the model. The small number of neurons cannot fully reflect the experimental 

relationships, which has a great impact on the training of the model, and the excessive 

number of neurons will lead to overfitting and affect the reality of the experiment. 

Therefore, a pre-experiment was used to simulate the fitting experiment under each number 

of neurons. 

As shown in Fig. 2, models with different numbers of neurons were used to simulate 

the input data for one million times, and the representative loss function of 10,000, 500,000, 

and 1.0 million simulation times are selected to draw the image. It can be seen that the error 

loss in the neural network before the number of neurons was 7, it decreased with the 

increase of the number of neurons, and reached the lowest level after the number of neurons 

was 9. Then, with further increase of the number of neurons, the number of neural network 

losses under each simulation number remained basically unchanged. Because a large 

number of neurons will increase the operation time, the result will be unstable or even lead 

to over-fitting. To simplify the operation, the number of neurons was tentatively selected 

as 7, 8, 9, and 10 (Fig. 3), and the time error loss was 0.00605. 

 

 
 
Fig. 2. Loss function with different number of neurons 
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a b 

  
c d 

 

Fig. 3. The number of neurons at 7, 8, 9, and 10 (a through d), and the relationship between the 
loss function and the number of training 
 

Further comparing the images of the four groups of 7, 8, 9, and 10 where the loss 

function changes with the number of simulations, it can be observed that the loss function 

was stable after the number of fittings was 100,000, and there was a clear loss inflection 

point in the image with the number of neurons at 9. The image inflection points of the 

number of neurons 7 and 8 were not clear, while the inflection point of the image with the 

number of neurons of 10 exhibited a gentle curve, which is the performance of the transition 

fitting phenomenon (Diawanich et al. 2009). Thus, the optimum number of neurons was 

determined to be 9, and the number of neural network fittings was determined to be 100,000 

times. 

According to the determined number of neurons combined with the input layer and 

output layer data, the structure diagram of the neural network was obtained as shown in 

Fig. 4. 
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Fig. 4. Neural network structure diagram (X1 is the position of the specimen, X2 is the moisture 
content, X3 is the steaming temperature, X4 is the steaming time, X5 is the set temperature, X6 is 
the set time, Y1 is the drying rate, and Y2 is the longitudinal cracking degree.  The number of 
neurons in the input layer, hidden layer, and output layer is 5, 9, and 2 respectively) 

 
Regression Fitting Analysis 

With the position of the specimen (X1), moisture content (X2), steaming temperature 

(X3), steaming time (X4), set temperature (X5), set time (X6) as independent variables, and 

the drying rate (Y1) and longitudinal cracking degree (Y3) as dependent variables, multiple 

regression fitting analysis was conducted using Origin. The results were as follows: 

Y1=6.19042×10-5X1+0.06915X2-0.00338X3-6.39869×10-4X4+0.05734X5-

0.00139X6-5.54984, R2=0.94266 (Drying rate)                   (7) 

Y2=0.45158X1+6.0305X2-0.24371X3-0.04526X4-0.48296X5-0.35659X6+86.23459, 

R2=0.04007 (Longitudinal cracking degree)                                           (8) 

The simulation coefficient of determination for drying rate was 0.94, and the 

simulation coefficient of determination for longitudinal cracking degree was 0.04. The 

experimental value of drying rate was in good agreement with the predicted value, which 

can simulate most situations. The experimental value of longitudinal cracking degree was 

in poor agreement with the predicted value, so it is impossible to predict the result. To sum 

up, it is feasible for regression fitting analysis to predict only specimen drying rate, but it 

is impossible to predict complex longitudinal cracking degree and other information. 

Therefore, regression fitting analysis was not able to predict the actual drying process. 

 
Model Performance Analysis 

When the data was input into the network built for learning, the experimental value 

with the predicted value of the neural network model was compared and a regression fitting 

to obtain the BP neural network training regression diagram was performed as shown in 

Figs. 5 and 6. The linear equations (Eqs. 9 and 10) obtained are given below: 
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Y1 = 0.9964X + 0.00025 (Drying rate)      (9)  

Y2 = 0.9959X + 0.00061 (Longitudinal cracking degree)    (10) 

The simulation coefficient of determination for drying rate was 0.96; the simulation 

coefficient of determination for longitudinal cracking degree was 0.99, indicating that the 

experimental value was in good agreement with the predicted value, and the BP neural 

network had good performance and will be able to simulate most situations.  

Figures 7 and 8 show the comparison between the predicted value of the neural 

network and the experimental value. Approximately 75% of the samples were randomly 

selected for learning and the remaining 25% of the samples were predicted. The blue line 

in the figure is the experimental value, the red line is the predicted value. The absolute 

error range of the simulation results and the experimental values was within 2%, and the 

drying rate and longitudinal cracking degree can be predicted to a certain extent for the 

conventional drying quality of wood after softening and setting treatments. As indicated 

from the two sets of graphs, the BP neural network can be used to predict the drying rate 

and the degree of longitudinal cracking. 

   
 

Fig. 5. Training regression curve of drying 
rate 

 

Fig. 6. Training regression curve of 
longitudinal crack degree 

 

 

 

 
 

Fig. 7. Comparison of predicted and 
experimental values of drying rate 

 

Fig. 8. Comparison of predicted and 
experimental values of longitudinal cracking 
degree 
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CONCLUSIONS 
 

In this paper, the BP neural network was used to simulate and predict the drying 

rate and longitudinal cracking degree of wood. The steaming treatment time, steaming 

temperature, set time, set temperature, initial moisture content of wood, and position of 

wood core and sapwood were the input quantities of the model; the drying rate and the 

longitudinal cracking degree were the output. There were 60 test data in the training group, 

accounting for 75% of the total data, and 20 data in the test group, accounting for 25% of 

the total data.  

1. The results show that when the number of neurons in the hidden layer was 9, the neural 

network training error was the smallest, which was 0.00605; at this time, the 

determination coefficient R2 of the neural network training set was 0.96 (drying rate 

prediction) and 0.99 (longitudinal crack prediction).  

2. The experimental test value was in good agreement with the predicted value, which 

demonstrated that the constructed BP neural network achieved good stability. The 

absolute error range between the simulation results and the experimental values was 

within 2%.  

3. In general, the neural network model has a good predictive ability for drying rate and 

longitudinal cracking degree. Therefore, it can be considered that although the 

properties of wood vary widely and the complex relationship between them has not 

been fully elucidated, the network model provides a reliable model and good prediction 

ability, which is of great significance to the optimization of the drying process of pine 

wood squares. 
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