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Cashew apple bagasse is biomass rich in little-exploited lignocellulosic 
material. This study used this biomass as a support for cell immobilisation 
of Saccharomyces cerevisiae. For this purpose, the immobilisation 
technique by attachment to a surface was applied. The bagasse used in 
this study contained 32.6% lignin. After delignification, the lignin content 
of the bagasse was 3.33%. The cell density was 1.21 × 108 cells g-1 for the 
immobilised cells prepared for 24 h. For the immobilised cells prepared for 
48 h, the cell density was 1.71 × 108 cells g-1. Microscopic observations 
showed that the adhesion of the yeast cells to the surface of the support 
occurred on all layers with the cells immobilised for 48 h. These results 
highlight the efficiency of cell immobilisation of S. cerevisiae on cashew 
apple bagasse. 
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INTRODUCTION 
 

The use of free cells for alcohol production aims to take advantage of the high 

production capacity of yeast. The selectivity and specificity of yeasts are studied to achieve 

good fermentation. However, yeasts have some disadvantages, such as limited efficiency 

due to substrate and product inhibition, yeast viability, and removal of excess yeast and 

CO2 (Saha and Banerjee 2013).  

The immobilised cell system is an effective solution, as it can increase productivity 

and minimise fermentation production costs (Tian et al. 2021; Dzionek et al. 2022). Cell 

immobilisation leads to higher cell densities, avoids losses of microorganisms, and 

facilitates cell/liquid separation (Vučurović et al. 2009; Krasňan et al. 2016). Thus, the 

choice of support and immobilisation technique is key to the immobilisation of 

Saccharomyces cerevisiae. The use of natural substrates, which are cheaper and more 

durable than synthetic substrates, can help to reduce costs and improve product quality 

(Santos et al. 2008; Karagoz et al. 2019).  

Therefore, cashew apple bagasse (CAB) was used. It is composed of lignocellulosic 

residue and has good mechanical and physical properties (Santos et al. 2007; de França 

Serpa et al. 2020). The CAB was derived from the pressing of cashew juice. The material 
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is non-toxic, of no commercial value, and is discarded after pressing the juice. Indeed, in 

cashew cultivation in Côte d'Ivoire, only the nuts are exported, and the cashew apples are 

left at the harvesting site or processed into juice (Adou et al. 2011; Soro 2012; Gnagne et 

al. 2023). In 2021, cashew nut production in the world was estimated at 1,363,452.62 

tonnes, and in Côte d'Ivoire at 837,850.12 tonnes (FAO 2023). The cashew apple represents 

9 to 10 times the weight of the nut (Soro 2012). Côte d'Ivoire is therefore the leading 

cashew apple producing country with an estimated production of 8 million tonnes.  

When the pseudofruit is processed into juice, bagasse is produced. To add value to 

bagasse and minimise its environmental impact, it would be ideal to use it as a support for 

cell immobilisation. Cellulosic materials are solid supports used for immobilisation by 

physical adsorption due to electrostatic forces or by covalent bonding between the cell 

membrane and the support (Santos et al. 2008; Kawaguchi et al. 2016).  

The present study aims to use CAB as cell support for Saccharomyces cerevisiae, 

to investigate the effect of chemical treatment on the composition and structure of the CAB 

support. 

 

 

EXPERIMENTAL 
 

Biological Material 
Cashew apples (Anacardium occidentale L.) (Fig. 1A) were collected in the 

Yamoussoukro area N 6°44’16.00944 W 5°22’42.29328 (Côte d’Ivoire). The apples were 

cleaned and washed by spraying them with running water. They were then disinfected in a 

100 ppm active chloride solution for 30 min. After extraction of the juice, the bagasse (Fig. 

1B) obtained was dried (Fig. 1C) and ground to obtain a powder (carrier) (Fig. 1D).  

 

  

Fig. 1. Anacardium occidentalis L.: cashew apple (A); bagasse (B); dried bagasse (C); and 
powder (D) 

 
Methods 
Preparation of the substrate 

The cashew apple bagasse (CAB) was processed according to the method of 

Pacheco (Pacheco et al. 2010). The CAB (100 g) was washed with distilled water and dried 

at 50 °C for 24 h. Then, the CAB was dissolved in a 3% HCl solution for 2 h 30 min with 

constant stirring in a thermostatic bath at 60 °C. It was then washed, dried at 50 °C, and 

delignified with 2% NaOH for 24 h. The bagasse obtained was then washed, dried, and 

ground in a mill (IKA MF 10 basic) to obtain a 0.5 and 0.2 mm particle size. 

 

  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Ouattara et al. (2023). “S. cerevisiae immobilization,” BioResources 18(2), 3736-3749. 3738 

Microorganism and inoculum 

The microorganism used was the commercial yeast S. cerevisiae (Saf-Instant 

LESAFFRE, France). A pure culture was isolated from the baker's yeast, inoculated onto 

Sabouraud Biolife agar, and incubated at 30 °C for 48 h. The inoculum was obtained in a 

100 mL medium, composed of (g.L-1): KH2PO4, 5; (NH4)2SO4, 2; MgSO4.7H2O, 0.4; yeast 

extract, 1; glucose, 10. The medium was sterilised at 110 °C for 10 min. The pH and 

temperature were maintained at 5.0 and 30 °C, respectively, for 24 h. Then, the cells were 

centrifuged (Hermle Z 207A, Germany) at 10,000 × g for 10 min to obtain the biomass for 

cell immobilisation. 

 

Cell immobilization 

The 30 g delignified media was sterilised at 110 °C for 10 min and then mixed with 

150 mL of synthetic medium, consisting of (g.L-1): glucose, 30; yeast extract, 5; 

(NH4)2SO4, 10; KH2PO4, 4.5; MgSO4.7H2O, 1; ZnSO4, 0.65. One percent (w/v) of the cells 

were inoculated into the medium containing the carrier and the mixture was fermented at 

30 °C for 150 rpm for 24 and 48 h. The liquid was decanted and the cell-containing medium 

was washed with sterile distilled water to obtain the immobilised S. cerevisiae cells. 

 
Characterisation of the Raw and Delignified Carrier 
Extractives and lignocellulosic composition  

Extractives were removed according to the procedure described by the author 

Poursat (Poursat 2015). The amount of sulphuric acid insoluble lignins was determined 

gravimetrically according to the laboratory analysis procedure (LAP) adopted by the 

National Renewable Energy Laboratory (NREL) (Sluiter et al. 2008). The holocellulose 

content was analysed via the chlorite method (Boudjema 2016). Cellulose was isolated 

from holocellulose after solubilisation of hemicelluloses in a dilute hydroxide solution 

(Yahiaoui 2018). The hemicellulose content was obtained by subtracting the cellulose 

content from the holocellulose content. 

 

Scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) 

The micrographic study of the CAB was performed using an SH-4000 M scanning 

electron microscope (Hirox, Tokyo, Japon) under the following conditions: 15 to 20 nm, 

30x to 60,000x magnification, and 5 to 30 kV acceleration voltage in 5 steps. In addition, 

energy dispersive X-ray spectroscopy (EDS) was performed with an XFlash 6/30 detector 

(Brucker, Billerica, MA, USA) for the determination of chemical elements. 

 

IR spectroscopy analysis 

 Spectroscopy was utilized to study the changes in the substrate. Fourier transform 

infrared spectroscopy (FT-IR) was performed in ATR (attenuated total reflectance) mode, 

using a Bruker Alpha Fourier Transform spectrometer, brand SHIMADZU (Kaduna, 

Federal Republic of Nigeria), equipped with a diamond crystal in the wavelength range of 

400 cm-1 to 4000 cm-1. 

 
Characteristics of the Immobilised Support  
Optical micrographs before and after immobilisation 

To confirm the immobilisation of S. cerevisiae cells on bagasse, optical 

micrographs were taken before and after cell immobilisation using a BA310 Optical 

microscope (Motic, Barcelona, Spain).  
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Counting of cells adsorbed on the support 

The mass of cells adsorbed on the support particles was quantified by counting on 

a Thoma slide (0.1 mm chamber, a central square of 400 small squares). Before counting, 

0.5 g of support containing immobilised cells was added to 50 mL of 0.85% NaCl solution 

and mixed for 24 h under agitation at 150 rpm. Then, 0.1 mL of solution (containing 

released yeast cells) was placed on a Thoma slide for observation. 

 

 

RESULTS AND DISCUSSION 
 

Characterisation of the Raw and Delignified Substrate 
Extractives and lignocellulosic composition 

Figure 2 shows the changes in the lignocellulosic composition of the substrate as a 

result of the chemical treatment. This figure shows a reduction in lignin content, indicating 

that the treatment affected the degradation of the lignin structure. Similarly, an increase in 

the cellulosic fraction was observed at the expense of the hemicelluloses. This could be 

explained by the fact that in an alkaline environment, there is an increased dissolution of 

lignin, hemicelluloses, and extractives (Bensah et al. 2019; Ouattara et al. 2021; Bamba et 

al. 2023).  

 

 
 

Fig. 2. Lignocellulosic and extractable composition of raw and delignified carrier 

 

Delignification removed a large part of the lignin, thus increasing the percentage of 

cellulose. This modification of the chemical composition improves the quality of the 

support, thus facilitating better access to the cellulosic groups during the cell 

immobilisation process (Bardi and Koutinas 1994; Correia et al. 2013; Kawaguchi et al. 

2016). 
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IR spectroscopy analysis 

The IR analysis was utilized to evaluate the structure of the raw and delignified 

substrate to identify the groups modified by the chemical treatment (Fig. 3). Thus, Fig. 3A 

corresponds to the IR of the raw substrate. The vibration of the aromatic and aliphatic 

hydroxyl stretching in the lignin is associated with the 3472 cm-1 band (Brazil et al. 2018). 

The 2922 cm-1 band has been attributed to the asymmetric and symmetric C-H stretching 

of the alkyl groups in the lignin structure (Li et al. 2017). The peaks observed at 1617, 

1543, and 1438 cm-1 could be associated with the vibrations of the aromatic backbone of 

lignin (de Souza et al. 2016). The 1319 cm-1 peak corresponds to the bending of the C-H 

group in cellulose (Fig. 3A). The 1230 cm-1 peak could correspond to the C-O stretching 

of acetyl groups present in the hemicellulose molecular chain (Fig. 3A). 

 

 

Fig. 3. IR spectra of the raw substrate (A) and raw delignified (B) 
 

These results confirm the analysis of lignocellulosic characteristics obtained 

previously (Correia et al. 2013; de Souza et al. 2016). The lignin bands at 1625 to 1438 

cm-1 show a decrease, demonstrating a lower lignin content compared to the content of the 

raw substrate (Fig. 3B). The characteristic cellulose bands in the region of 1233 to 1032 

cm-1 can be mainly observed in the spectrum of delignified CAB, in which these bands are 

related to vibrations of the pyranosyl rings, showing an increase in the cellulosic fraction 

(Fig. 3B). The peak at 1032 cm-1 is attributed to absorptions from the hemicellulose, 

explicitly to the stretching of the C-O in the C-O-C bond (Fig. 3B). In contrast, the IR 

spectrum of the raw and delignified carrier analysed in this work did not change 

significantly. 
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Scanning electron microscopy (SEM) analysis 

The scanning electron microscopy structure of the raw and delignified bagasse is 

shown in Figs. 4 and 5. The texture of the raw CAB shows an irregular structure covered 

with wax, generally found on lignocellulosic materials (Daud et al. 2013; Ouattara et al. 

2021).  

 

 

Fig. 4. Morphology of raw bagasse at different magnifications: 30 µm; 50 µm; and 100 µm 

 

 

Fig. 5. Morphology of delignified bagasse at different magnifications: 30 µm; 50 µm; and 100 µm 
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After processing, wax residues are also removed from the delignified structure. The 

delignified bagasse structure has a smooth surface, which indicates that some of the lignin 

had been removed (de Souza et al. 2016). 

The EDS chemical mapping (Figs. 6 and 7) reveals a carbon (C) content of 62.3% 

and an oxygen (O) content of 37% in the raw substrate (Table 1). After delignification, a 

lower C content (56.9%), and a higher O content (40%) were observed (Table 2). The 

increase in O content could be because of the oxidation of the lignin side chains, as part of 

the oxygen was involved in the lignin degradation reactions and was incorporated into the 

oxidised lignin products (Correia et al. 2013; de França Serpa et al. 2020). The chemical 

elements P, K, and Fe detected in EDS, would come from the chemical composition of the 

lignocellulosic biomass (Figs. 8 and 9). The removal of lignin by chemical processes tends 

to deform the rigid structure of lignocellulosic materials and improves the possibilities of 

immobilization of CAB cells on the structure of cellulose and hemicelluloses by increasing 

the porosity and roughness of the support material (Kopsahelis et al. 2007; Tran and Le 

2014). 

 

 
 

Fig. 6. Chemical element mapping of raw bagasse at 20 µm using the Brucker X-30 flash EDS 
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Fig. 7. Chemical element mapping of delignified bagasse at 20 µm using the Brucker X-30 flash 
EDS 

 

 
 

Fig. 8. Microanalysis spectrum of raw bagasse at 20 µm 
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Fig. 9. Microanalysis Spectrum of delignified bagasse at 20 µm 

 

Table 1. Quantification of Chemical Elements in Raw Bagasse 

 

 

 

 
 
 
 
 

 
Table 2. Quantification of Chemical Elements in Delignified Bagasse 

 
 
 
 
 
 
 
 
 
 
 
 

 
Characteristics of the Immobilised Support  
Optical micrographs before and after immobilisation 

Figure 10 shows the microscopic observation of the support with and without cells. 

It can be seen in Fig. 10A that the cell-free supports were irregularly shaped. Microscopic 

Element A lign Net 
Mass 
(%) 

Mass.norm 
(%) 

Atom 
(%) 

C 6 K-series 83133 62.36 62.36 68.85 

O 8 K-series 33866 37.53 37.53 31.11 

K 19 K-series 1141 0.08 0.08 0.03 

P 15 K-series 523 0.02 0.02 0.01 

Fe 26 K-series 26 0.01 0.01 0.00 

    Total: 100.00 100.00 100.00 

Element A lign Net Mass (%) 
Mass.norm 

(%) 
Atom (%) 

O 8 K-series 332 40.94 40.94 34.82 

C 6 K-series 584 56.99 56.99 64.57 

Cl 17 K-series 0 0.00 0.00 0.00 

Fe 26 K-series 62 1.05 1.05 0.26 

K 19 K-series 14 0.23 0.24 0.08 

Ca 20 K-series 38 0.79 0.79 0.27 

P 15 K-series 0 0.00 0.00 0.00 

    Total: 100.00 100.00 100.00 
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observations revealed that the adhesion of the yeast cells to the surface of the support 

occurred on all layers with cells immobilised for 48 h (Fig. 10C). By contrast, for cells 

immobilised for 24 h (Fig. 10B), the adhesion was slight on the surface of the support. The 

authors observed an intensive accumulation of yeast that could increase the immobilisation 

rate of yeast on the surface of the support immobilised for 48 h (Fig. 10C). 

According to Yu et al. (2007), the lignocellulosic materials used as support allow 

the yeast cells to be adsorbed on the surface of the supports. Only a few of these yeast cells 

are firmly embedded in the inner side of the supports. 

 

 
 

Fig. 10. Optical microscopy of CAB (×400): without cells (A), with cells immobilised 24 h (B), and 
with cells immobilised 48 h (C) 

 

It has been reported that the adhesion of yeast on delignified agricultural waste 

depends on electrostatic interactions between the support and the negatively charged cell 

surface by physical adsorption (Santos et al. 2008; Ahmadi et al. 2016). 

 
Counting of cells adsorbed on the support 

During the cell immobilisation performed, the cell density was taken to know the 

initial cell load of yeast firmly attached to the surface of the support. The cell density was 

1.21 × 108 cells g-1 for cells immobilised for 24 h. While for cells immobilised for 48 h, 

the cell density was 1.71 × 108 cells g-1. These results are in agreement with the work of 

the authors (Żur et al. 2016; Wang et al. 2018), who observed that cell immobilisation is a 

time-dependent process and they attribute this dependence to two main factors: cell 

multiplication and the formation of a strong and irreversible adhesion. The high cell load 

presented in this work can be attributed to the average size of supports and the 

immobilisation time. According to Branyik et al. (2001), when the support is small, it 

allows for a high cell load. These results confirm and suggest cell immobilisation on 

lignocellulosic materials. Thus, experiments on fermentation conditions with immobilised 

Saccharomyces cerevisiae cells should be studied. 
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CONCLUSIONS 
 

1. The characteristics of the bagasse proved to be important in highlighting these 

properties. Bagasse contained 32.6% lignin, and after delignification with sodium 

hydroxide (NaOH 2%) it contained 3.33%. Delignification disrupted the composition 

of the biomass by removing the lignin, which prevents enzymatic or chemical access 

to the cellulose. 

2. The structure of the delignified carrier, as observed by scanning electron microscopy  

(SEM), had a smooth appearance compared to the structure of the raw carrier. This 

demonstrates that sodium hydroxide (NaOH 2%) had broken bonds within the carrier 

components. 

3. Infrared (IR) analysis showed peaks at 1617, 1543, and 1438 cm-1 that characterise the 

lignin in the raw substrate. After delignification, the lignin bands showed a decrease, 

demonstrating a lower lignin content compared to the content of the raw support. 

4. Preparation of the cells immobilised for 48 h resulted in higher cell loads of 1.71 × 

108 cells g-1 and showed that Saccharomyces cerevisiae uniformly colonised cashew 

bagasse. 
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