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The aim of this study was to analyze the growth rings and evaluate the 
effect of the urban environment on the growth of Terminalia catappa L. 
under intense industrial activity. At least two wood samples were obtained 
from each tree with an increment borer. The regions of Volta Redonda 
(Northwest and Southeast regions) and Resende (used as control) were 
established for the collection. The dendrochronological potential of T. 
catappa indicated sensitivity to precipitation and temperature in a more 
exposed urban and industrial steel pollution area because there were 
differences in growth when compared to an area less exposed to the same 
pollution. Thus, it was possible to conclude that this species has the 
potential to be used as a bioindicator of anthropogenic activities. In 
addition, the delimitation of the growth rings of the studied species 
contributes to the realization of future dendrochronological studies, 
expanding the understanding of the behavior of this species present in 
urban environments at different regional scales. This study reinforces the 
importance of rainfall and temperature in regulating radial growth in 
tropical forests. 
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INTRODUCTION 
 

The study of growth dynamics of a woody species leads to a better understanding 

of specific strategies developed in favor of its adaptation in each environment. Trees react 

according to environmental variables, which may be reflected in the cambial activity and 

in the formation of annual rings, expressing events that occurred both in the past and in the 

present year (Tomazello Filho et al. 2001). Climate, for example, is considered one of the 

most important modulators of tree growth (Locosselli et al. 2019a), and in this sense, 

dendrochronology makes it possible not only to determine age, but also to study the 

performance of trees as a function of factors that made them grow (Fontana et al. 2018b), 

both in natural and urban environments. 
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In addition to climate, other variables can affect plant performance, especially those 

growing in urban environments that have less favorable environmental conditions. The 

trees that are present in these environments are exposed to thermal stress, soil drought, and 

low air humidity (Gillner et al. 2014). Therefore, these factors may contribute to the 

increased vulnerability of tree development (Locosselli et al. 2019a). A first step in 

predicting forest resistance and resilience to unfavorable conditions is to know how it 

performed in relation to past climatic conditions. To investigate this issue by 

dendrochronological methods, it is necessary to identify which species are sensitive to the 

environmental conditions to the point of influencing annual growth rings. In this context, 

one of the authors’ goals was to explore the dendrochronological potential of and assess 

climate influence on radial growth in Terminalia catappa L. (almond tree), growing in 

urban conditions. The aim was to evaluate the potential of T. catappa as an environmental 

bioindicator. Furthermore, atmospheric pollution, linked to the urban environment, is 

considered one of the most important environmental concerns (Volná et al. 2021). The 

presence of steel industries in urban areas can significantly increase air pollution by 

emitting toxic heavy metals such as lead, cadmium, mercury, arsenic, chromium, and 

nickel, as well as various air pollutants such as acid gases (SO2 and NOX), incomplete 

combustion pollutants (CO and HC), and particulate matter (PM) of varying sizes (Wang 

et al. 2016), which can alter the optical properties of leaf surfaces, leading to a reduction 

in the amount of light required for photosynthesis (Prajapati 2012). Because it is a critical 

problem for human health, the monitoring of these pollutants has become essential during 

urbanization (Isinkaralar 2022). 

Considering the sensitivity of species when recording changes in the environment, 

dendrochronological studies have been conducted to observe the effect of atmospheric 

pollution on the growth of tree species (Battipaglia et al. 2010; Bartens et al. 2012; Gillner 

et al. 2014; Sensuła et al. 2017; Kukarskih et al. 2022). Gillner et al. (2014) affirm that 

tree-ring analyses are a valuable tool for urban forestry to assess the capability of tree 

species to withstand future climatic conditions that are aggravated in urban heat islands 

and help in the selection of adapted plantations. The same authors found that two important 

species of urban forestry in the city of Dresden, in Germany, Acer platanoides L., and Acer 

pseudoplatanus L., should be planted at urban sites with lower heat and drought stress. 

Sensula et al. (2017), studying Pinus sylvestris L. growing near sites of chemical factories 

in Poland, discovered that the effects of industrial pollution have been recorded by this pine 

species via the long-term reduction in the size of thickness growth, reduction in the level 

of homogeneity of short-term incremental response, and reduced susceptibility of trees to 

short-term environmental impulses. The authors concluded that pollution could affect the 

size of incremental growth and disturbance in the incremental reaction of trees. Kukarskih 

et al. (2022) after studying P. sylvestris in Russia concluded that environmental pollution 

negatively affects tree growth. Moreover, the results of climate and historical data analysis 

suggest that the trees on urban sites were weakened by both climate and air pollution factors 

after 1941 because of the introduction of more than 60 industrial factories to the studied 

city, which generated a significant increase in air pollution. 

In Brazil, there are still few studies that address the same effect on urban trees 

(Chagas 2013; Geraldo et al. 2014; Locosselli et al. 2019; Vasconcellos et al. 2019). For 

example, Chagas (2013) studied the species Tabebuia pentaphylla Hemsley and 

Poincianella pluviosa (DC.) Queiroz and discovered that changes in the pattern of climatic 

response can provide evidence regarding the influence of non-climatic factors, such as 

stress and sources of pollution, on the annual growth rate of trees in urban and peri-urban 
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locations. Locosselli et al. (2019) used Tipuana tipu (Benth.) Kuntze to assess how climate 

and air pollution affect the development of urban trees and found that climate modulates 

the growth of these trees in the urban environment. However, the authors also concluded 

that air pollution has a dramatic influence on tree inter-annual growth variability compared 

to climate and may be considered a limitation to tree growth. Vasconcellos et al. (2019) 

found that there is an immediate response of the species Ceiba speciosa (A.St.-Hil., A.Juss. 

& Cambess.) Ravenna in urban environments in relation to the rainfall and the dry and hot 

climate, and the absence of natural water reserves in urban soil may explain this more 

immediate response of urban tree growth to rainfall and temperature indexes. Therefore, 

the search for varied species can add to the knowledge base and expand the performance 

of studies on this topic in the country. 

In this context, T. catappa, an exotic but quite common species, is found in most 

cities in Brazil, especially in urban areas (Ribeiro et al. 2020). However, questions remain 

regarding the growth dynamics of this species in an urban environment and how exposure 

to atmospheric pollution can interfere with the formation of rings in these environments. 

Therefore, the present study aimed to analyze the effect of the urban, industrial 

environment on growth rings of T. catappa. Knowing that this species has 

dendrochronological potential (Chagas 2009), it is expected to find differences in growth 

and responses to climatic conditions because of interference from atmospheric pollution. 

Thus, because it is a consolidated species in urban afforestation, the study of its growth 

dynamics in an anthropic environment can contribute to future studies being conducted at 

different regional scales. 

  

 
EXPERIMENTAL 
 

Study Areas 
The study was conducted in the municipalities of Volta Redonda (22º31'23" S, 

44º06'15" W) and Resende (22°27'46” S, 44°27'20” W), the latter being for the purpose of 

controlling the samples, as it is approximately 40 km away from an imposing steel industry 

in Volta Redonda. Both are in the Middle Paraíba do Sul region, in the state of Rio de 

Janeiro, Brazil. The altitude in Volta Redonda ranges from 363 m to 707 m a.n.m. on the 

banks of the Paraíba do Sul River, while in the main area it is 380.3 m (Gioda et al. 2004). 

According to the Köppen climate classification, the climate is Cwa (humid subtropical 

zone, with dry winters and hot summers) (Alvares et al. 2013). The average annual 

precipitation is 1,337 mm and the average temperature is 21 °C (Rocha and Guimarães 

2017). February is the hottest month (24 °C), and July is the coldest (17 °C) (Montine et 

al. 2014). The dry season is from April to September and the wet season is from October 

to March. 

 

Sampling and Tree Ring Measurements 
Initially, a survey of individuals of T. catappa present in the surroundings of the 

steel mill was conducted, within a radius of 2500 m from the industrial plant. Two regions 

were also established for collection (Northwest and Southeast) considering the pollution 

levels in the municipality and the predominant wind direction. Located on the west side of 

the Paraíba do Sul River, the northwest region exhibits higher levels of pollution, while the 

southeast region, located on the east side of the same river, has lower levels (Peiter and 

Tobar 1998). The predominant wind direction is northwestward, according to a survey of 
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data made available by State Institute of the Environment (INEA) between 2001 and 2018. 

Of the 110 individuals of T. catappa found and georeferenced in Volta Redonda, 86 trees 

were in good phytosanitary condition and were chosen for the accomplishment of this 

study: 40 in the southeast region and 35 in the northwest region. In Resende, 11 trees were 

sampled (used as control, because they were approximately 40 km from the steel factory). 

The study areas, the collection points, and the climate diagram are illustrated in Fig. 1. 

 

 
 

Fig. 1. Representation of study areas; Delimitation of the sampled area, the collection points, and 
a climatic diagram of the Resende meteorological station. 

 

At least two wood samples, perpendicular to each other, were obtained from each 

tree using an increment borer in the bark-pith direction at 1.30 m above the ground. After 

collection, the samples were polished with a sequence of sandpaper (between 80 to 1200 

grains/mm²) to highlight the transverse plane. The samples were scanned at 1200 dpi for 

analysis and counting of annual rings. 

The width of the annual rings was measured using CooRecorder version 7.8 (Cybis 

Elektronik & Data AB, Saltsjöbaden, Sweden) with an accuracy of 0.01 mm in the digitized 

images. The COFECHA software was used to statistically verify the cross dating and the 

quality of the measurement of the rings (Holmes et al. 1986; Grissino-Mayer 2001), in 

which 30-year segments were used with 15-year overlaps. Then, the ARSTAN software 

was used to remove the biological age trend of individual series and adjust a common 

growth signal between the trees (Cook and Holmes 1996), therefore, the cubic smoothing 

spline model (50% of variance maintained in 20-year segments) was used to adjust each 

series. During this process, an individual series of rings was considered unreliable if it had 

a low correlation value with all other series and under these circumstances, that series was 

rejected to improve the common signal (Brienen and Zuidema 2005). Of a total of 172 

cores, 38 cores were removed, 32 in the SE region and six in the NW region. No cores were 

removed from Resende. The chronologies were built with 134 cores. 
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Data Analysis and Statistics 
At each site, the final mean chronology was constructed from the set of all 

standardized tree-ring width series for their populations. The standard chronology was used 

to perform Pearson's correlations, being the most sensitive to the signal of interest between 

growth and local climatic variables, both for the current and previous year, as well as for 

the dry and rainy season periods. For this purpose, monthly precipitation, and temperature 

data between 1961 and 2018 were used and obtained from the nearest meteorological 

station to the studied locations (Resende station). The data were obtained by the National 

Institute of Meteorology (INMET). In addition, to evaluate the properties of the 

chronologies (Cook et al. 1990), the average sensitivity, the correlation between the series, 

Running Bar (RBar), and the expressed population signal (EPS) (Fritts 1976; Speer 2010) 

were calculated (in COFECHA and ARSTAN) for each study site. Furthermore, the 

cumulated radial increment (CRI) was calculated by adding the measurements of each ring 

and the radial annual increment (RAI) was calculated by dividing the CRI by the number 

of rings, to verify the performance differences between the sites. 

Before performing the statistical analyses, all quantitative results were evaluated 

for normality and homoscedasticity using the Shapiro-Wilk and Levene tests, respectively. 

Values that did not follow a normal distribution were submitted to logarithmic 

transformation. The results of the radial increments were compared with each other by 

Student's t test at a confidence level of 95%, following the recommendations of Zar (2010). 

 

 
RESULTS AND DISCUSSION 
 

Annual Rings Delimitation and Measurements 
In the three study sites, the species T. catappa presented distinct annual rings, 

visible to the naked eye, delimited either by the formation of a thin line of marginal axial 

parenchyma, or by the confluence of the lozenge aliform paratracheal parenchyma and 

often associated with vessel alignment, fibrous zones, and slight differences in vessel 

diameter at the transition to the next ring. 

The cumulated radial increment was similar among the population trees in the Volta 

Redonda regions and higher in the trees in Resende (Fig. 2). Trees in the northwest region 

exceeded the average value of 200 mm of increment accumulated at approximately 75 

years old, while trees in the southeast region reached this value at an approximate age of 

60 years. In Resende, trees aged between 60 and 65 years showed a cumulated increase of 

200 mm. However, the longest-lived trees were mostly in the most polluted region 

(northwest), with ages estimated at up to 110 years. The trees in the southeast region were 

up to 104 years old and the youngest individuals were concentrated in Resende, with a 

maximum age of 95 years. It is also observed that the maximum average of the accumulated 

radial increment occurred in the trees of the northwest region, with 266.51 mm at 110 years. 

The southeastern region had trees with 282.73 mm at 100 years of age and the trees of 

Resende with 220.44 mm at 95 years of age. 

The trees in the northwest region (n = 32) had a mean age of 50 years, radial annual 

increment (RAI) and, at 45 years old a cumulated radial increment (CRI) of 2.60 mm/year 

(SD ± 0.58) and 116.78 mm (SD ± 26.16), respectively. In the southeast region (n = 24), 

the trees had a mean age of 47 years, with an annual radial increment at 45 years old of 

2.83 mm/year (SD ± 0.41) and a radial increment of 127.45 mm (SD ± 18.59). In Resende 

(n = 11), the trees had an average age of 59 years. The radial annual increment at 45 years 
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old was 2.87 mm/year (SD ± 0.29), and the radial increment was 129.02 mm (SD ± 13.13). 

The values of the annual and radial increments, as well as the dendrometric values of the 

trees used in the present study, can be requested from the first author. 

 

 
 

Fig. 2. Cumulated radial increment (CRI) of the T. catappa species in the study regions: (a) 
northwest, (b) southeast, and (c) Resende; the dashed line represents average growth. 

 

Both the RAI and the CRI showed significant differences between the trees sampled 

in Volta Redonda and Resende. The RAI between the northwest region and Resende 

presented the following statistical values t = - 2.95, p = 0.008; between the southeast region 

and Resende presented t = - 2.58, p = 0.018. The CRI between the northwest region and 

Resende presented t = - 4.97, p = 0.000; between the Southeast region and Resende 

presented t = - 3.90, p = 0.000. However, between the northwest and southeast regions, 

there was no significant difference between tree growth. The RAI presented t = - 0.42, p = 

0.679 and CRI presented t = - 1.34, p = 0.186. 
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Dendrochronological Analysis 
After analyzing the growth rings, it was observed that from a total of 172 samples 

obtained from 86 trees (35 in the northwest region, 40 in the southeast region, and 11 in 

Resende), 134 radial samples were used to build the chronology (64 in the region north-

west, 48 in the southeast, and 22 in Resende) (Table 1). 

 

Table 1. Statistical Characteristics of the T. catappa Species in the Study Sites 

Variables 
Volta Redonda 

Resende 
NW SE 

Dated Trees / Radial 
Samples 

32/64 24/48 11/22 

Radial Annual 
Increment ± SD (mm) 

2.80 ± 0.49 2.96 ± 0.40 3.50 ± 0.48 

Period 
1909-2019 (111 

years) 
1916-2019 (104 

years) 
1925-2019 (95 

years) 

Average Series 
Length (years) 

50; SD = ±17 (Min = 
26; Max = 111) 

48; SD = ±16 (Min = 
27; Max = 104) 

60; SD = ±15 (Min = 
35; Max = 95) 

Average Sensitivity 0.504 0.519 0.482 

Intercorrelation series 0.292 0.298 0.535 

Rbar ± SD 0.123 ± 0.198 0.132 ± 0.195 0.265 ± 0.145 

EPS 0.926 0.902 0.917 

SD: Standard deviation; Min = minimum value; Max = maximum value; Rbar: Correlation 
coefficient; EPS: Expression of population sign. 

 

The statistical characteristics, presented in Table 1, show that the mean sensitivity 

values were about 0.40 for the samples from the three study sites. The intercorrelation 

values of the series were similar for trees from Volta Redonda (northwest and southeast 

regions) (< 0.30); however, Resende presented a higher value (> 0.50). The values obtained 

for the variable Rbar varied between 0.123 and 0.265. The population expression signal 

(EPS) was high in all regions and ranged from 0.902 to 0.926 between study sites. 

Figure 3 illustrates the growth rates of rings constructed from the standardized 

values, as well as the number of samples used during the analyzed period (1909 to 2019) 

at the study sites. The EPS and Rbar values were highlighted at an interval of 20 years 

(1950, 1970, 1990, and 2010), and it was found that, for all study sites, the EPS value 

increased as the number of radial samples increased. The correlation coefficient (Rbar) was 

higher in the period of 1950 and lower in the year of 1990 for the chronologies of the trees 

in the northwest region and Resende; and higher in the period of 2010 and lower in the 

period of 1950 for the chronologies of trees in the Southeast region. 

The correlation indices of the width of the rings of the individuals analyzed in the 

northwest region (NW) are represented in Fig. 4. For the rainfall variable, there was a 

significant positive correlation in the current year; however, the significance occurred in 

two months of the dry season (July and September) and one month of the rainy season 

(October). In other words, the trees in the NW region showed a rapid response to the 

precipitation rates that occurred in the current year (Fig. 4a). For the temperature variable, 

there was only a significant negative correlation during the current year, in the month of 

October, which corresponds to the rainy season (Fig. 4b). In other words, wetter early 

spring and milder temperatures favor the growth of the species. For the Southeast (SE) 

region, there was no significant correlation between growth and climatic variables. In 

Resende, there was no significant correlation for the rainfall variable; however, for the 
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temperature variable, there was a significant negative correlation for the month of 

September, referring to the previous month, which corresponds per month of the dry 

season. 

 
Fig. 3. The growth index of T. catappa rings in the study regions (black line): (a) northwest, (b) 
southeast, and (c) Resende. The gray area shows the number of radial samples used during the 
analysis period (1909 to 2019). 

 

Considering the dendrochronological potential of the tropical species T. catappa 

(Chagas 2009), it was possible to describe a new analysis of the annual rings of this species, 

finding differences in growth and responses to climatic conditions in an environment under 

intense urban and steel activity. Although T. catappa is abundantly found in anthropic 

environments (Ribeiro et al. 2020), there are still few studies that address the characteristics 

of the wood of this species (Van Vliet 1979; Ruwanpathirana 2014), or even the analysis 

of rings (Chagas 2009). 
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Fig. 4. Correlations between the width of T. catappa rings and climatic variables (1961 to 2018). 
The bars represent the correlation indices between the growth of the species in the northwest 
region and the indices of precipitation (a) and temperature (b). The light gray areas show the 
rainy season period. DS: Dry season; WS: Wet season. *Significant correlation values, critical 
correlation value = 0.259, for p < 0.05. 

 

Some species of the genus Terminalia have distinct rings, such as T. bellirica 

(Gaertn.) Roxburgh, T. myriocarpa Van Heurck & Müll.Arg., T. ivorensis A. Chev, T. 

superba Engl. & Diels, T. gracilipes Capuron, T. Amazonia Exell in Pulle, and T. oblonga 

Steud. (Urbinati et al. 2003; Ridder et al. 2013; Singh et al. 2013; Gaspard et al. 2018; 

Marcelo-Peña et al. 2020). When studying the wood anatomy of several species of the 

Combretaceae family, Van Vliet (1979) described that the annual rings are distinct for T. 

catappa. A more recent study by Chagas (2009) reported a similar description, but detailed 

some more features, stating that the growth layers are distinctly demarcated by a thin band 

of marginal parenchyma, sometimes associated with confluent paratracheal axial 

parenchyma, by the thickening and radial flattening of the fiber wall. Additionally, there 
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are observed variations in the diameter of the vessels in the transition of the annual rings. 

In other words, the description made by the author corroborates the macroscopic 

characteristics observed in the present study. Therefore, it is understood that T. catappa 

did not present differences in the forms of delimitation of the annual rings in an urban 

environment. 

In dendrochronological studies of tropical species, the difficulty in delimiting 

annual rings is a frequent problem (Trouet et al. 2010; Ridder et al. 2013). For this reason, 

Brienen and Zuidema (2005) recommend the use of trunk discs to facilitate the verification 

of the discontinuity of rings in these species. In addition, anatomical characterization helps 

to correctly identify rings during measurements and reduces errors caused by false rings, 

which are a common feature in tropical species (Aragão et al. 2019), increasing the 

accuracy of measurements and favoring the construction of reliable chronologies (Fritts 

1976; Vaganov et al. 2011; Brienen et al. 2016; López and Villalba 2020). In the present 

study, the level of difficulty in identifying the rings of T. catappa was high and demanded 

immense attention during this process, because the species present several forms of ring 

delimitation. Moreover, it was not possible to obtain an entire disc of the trunk once the 

samples came from urban afforestation. 

The chronologies constructed with the 67 trees of T. catappa indicate that the 

success of cross-dating between individuals occurred due to a similar variation in growth 

patterns (Stahle et al. 1999). Some authors, working with species of the same genus, found 

average sensitivities that ranged from 0.64 for T. gracilipes, in a xerophytic environment 

in southwestern Madagascar, and 0.16 for T. superba, in lowland tropical forests in the 

western and in the central African continent (Ridder et al. 2013; Gaspard et al. 2018). Speer 

(2010) suggests that 0.20 is an accepted value in series that are sensitive enough for climate 

reconstruction. However, for trees present in urban environments, some authors found 

values greater than 0.40 (Chagas 2013; Locosselli et al. 2019; Vasconcellos et al. 2019), 

which is a value considered so sensitive that it may mean that dating is complicated by the 

frequent presence of narrow or absent rings close to wider rings (Speer 2010). However, 

the average sensitivities found for urban trees of T. catappa demonstrate year-to-year 

growth variability and a high common signal, inferring that the growth of trees from Volta 

Redonda and Resende can be influenced by an environmental, climatic, or non-climatic 

factor. The average correlation coefficient for all pairs of series described by the value of 

Rbar, in general, was low for the chronologies of the species T. catappa but like those 

found for urban trees (Locosselli et al. 2019; Vasconcellos et al. 2019). Furthermore, the 

correlations varied along the growth of the trees in the different studied places, which 

makes it possible to assess the period in which growth limitations occurred (Fritts 1976). 

The EPS values express the quality that a finite set of radial samples must represent 

the chronology of the infinite population (Buras 2017); that is, the EPS value is influenced 

by the size of the sample set (Wigley et al. 1984; Speer 2010; Mérian et al. 2013). 

According to Buras (2017), the EPS value has been misinterpreted in dendrochronological 

studies, because the constant arbitrary use of the theoretical threshold above 0.85, 

suggested by Wigley et al. (1984), refers to the signal strength of the subsample, not the 

total sample size. Therefore, no specific EPS value can guarantee that the chronology of 

the growth rings is suitable for climatic reconstructions (Cook et al. 1990; Buras 2017). 

 

Response of Terminalia catappa to Climate Conditions 
In species from temperate climates, it is consensual to admit that the climate can 

significantly influence the tree radial growth (Fritts 1976; Holmes et al. 1986; 
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Schweingruber 1988; Speer 2010; Vaganov et al. 2011). Nevertheless, the use of tropical 

species in dendrochronological studies was for some time questioned, as some authors 

assumed that tropical species usually did not produce annual rings. However, the recent 

work by Zuidema et al. (2022), which brought together the contribution of 53 authors and 

was based on a new global network consisting of over 14,000 tree-ring data series from 

350 locations across the tropics, makes it possible to identify the formation of annual rings 

in hundreds of tropical species. The research also allowed for the study of climatic 

phenomena (temperature and precipitation) recorded in tree rings in different tropical 

environments, suggesting that climate change may increase the sensitivity of tropical trees 

to climatic fluctuations. 

Other works that can be mentioned are those by Fontana et al. (2018) who 

concluded that Copaifera lucens Dwyer growth is more dependent on precipitation than 

temperature, being sensitive to drought in cases of extreme water deficit during the late 

growing season. Campbell et al. (2022), when investigating the dendroclimatological 

potential of Paratecoma peroba (Record) Kuhlm. occurring in the last remnant of seasonal 

semi-deciduous forest in Rio de Janeiro, Brazil, found that temperature is the climatic 

factor with the greatest influence on the growth ring of the species. Likewise, Aragão et al. 

(2019), evaluated the dendrochronological potential of four Caatinga neotropical dry forest 

tree species and found that inter-annual growth variation is strongly driven by seasonal 

rainfall. Moreover, the authors indicated that the strong dependence of trees on 

precipitation is worrisome, considering that climate change scenarios forecast increased 

drought conditions in the Caatinga dry forest. 

The relationships between climate and growth can also be modulated by non-

climatic factors, including those present in microsites (Fang et al. 2015). Urban areas can 

develop a different microclimate due to the presence of numerous sources of pollutants, 

both vehicular and industrial, which contribute to excess heat (Kukarskih et al. 2022). In 

addition, particulate matter (PM) from these emissions can also affect the local climate and 

intensify heat island and thermal inversion effects, changing the way radiation is 

transmitted through the atmosphere (Valverde et al. 2020; Kukarskih et al. 2022; Zhang et 

al. 2022). It is worth mentioning that the retention of pollution occurs as a function of urban 

size, atmospheric stability, and the intensity and flow of winds (Takebayashi and Senoo 

2018; Yun et al. 2020; Abbassi et al. 2022), these considered as the main mechanism that 

results in greater deposition of particles in trees (Chen et al. 2015). At the same time, the 

vegetation that makes up urban afforestation is subject to greater stress and can undergo 

changes in its structure (Rai 2016), such as morphological or anatomical parameters of the 

leaves (Alves et al. 2008; Costa et al. 2015), in cellular metabolic processes (Sytar 2013) 

in periods of cambial activity and dormancy (Iqbal et al. 2010a, 2010b; Vasconcellos et al. 

2017), or even in xylem anatomy and radial increment (Leonelli et al. 2012; Chagas 2013; 

Pretzsch et al. 2017; Vasconcellos et al. 2019; Vasconcellos and Callado 2020). In this 

way, the task of interpreting dendroclimatic reconstructions, for example, can be aided by 

investigating the influences of non-climatic sources (Fang et al. 2015). 

Different responses were observed when relating the growth of T. catappa with the 

climatic variables in the study sites. Considering that climatic data of precipitation and 

temperature were the same, it is suggested that factors related to atmospheric pollution may 

interfere with the growth of this species in an urban environment. In addition, it is possible 

to infer that the sensitivity of the species to the climate was lower in Resende, because the 

municipality is far from the urban-industrial center of Volta Redonda and, for this reason, 

does not receive too much influence from the pollution from this specific location. 
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However, when evaluating the behavior of the species as a function of the climate between 

the two regions of Volta Redonda (NW and SE), the trees in the northwest region showed 

greater sensitivity to climatic indices, for precipitation rates. Even though they are close, 

the trees in the southeast region did not express a significant correlation between the 

precipitation and temperature indices, that is, the growth of trees in this region was not 

dependent on the climatic factor. This fact could be explained by the possible interference 

of the winds throughout the year. These differences in growth between NW and SE, in 

addition to being explained by the influence of pollution, may also be due to the heat island 

effect exerted by the industrial unit through the increase in temperature in the northwest 

region, induced by the wind direction (Abbassi et al. 2022; Song et al. 2022). 

It is noteworthy that the tree ring index presented in Fig. 3 all show a decreased 

trend during the 2000 to 2019 period, which may be related to the increasing climate 

extremes. Regoto et al. (2021), in an analysis of seasonal and annual trends of extreme 

indices of air temperature and precipitation over Brazil during the period 1961 to 2018, 

concluded that, in the Southern region, the climate is becoming wetter, with a reduction in 

consecutive dry days, especially in spring. Likewise, Córdova et al. (2022), in a study on 

the dynamics of precipitation anomalies in Tropical South America, found a significant 

increase in the frequency of climatic extremes occurrence (precipitation) in the south-

eastern region of Brazil, which includes the 3 locations sampled in the present work. An 

identical situation was observed in a humid subtropical zone in the Northern Hemisphere, 

where climate extremes increased under global warming (Shao et al. 2021). 

 

Urban Pollution Effects 
The life expectancy of Terminalia catappa can reach 100 years, and the species can 

present heights that vary between 15 and 25 meters in the natural environment (Flores 

2003; Thomson and Evans 2006). Although the ages of the trees in each region studied 

were similar, the differences that occurred between the increments of trees from Volta 

Redonda and trees from Resende may be associated with pollution, because the trees that 

grew less were those from Volta Redonda. Studies indicate that the effects of atmospheric 

pollution on urban trees, in general, affect photophysiological mechanisms, causing 

changes in the optical properties of leaves, the photosynthetic system, and in stomatal 

functioning (Wigley et al. 1984; Schweingruber 1988; Grantz et al. 2003; Paoletti 2009; 

Prajapati 2012; Mérian et al. 2013), consequently, interfering with the growth in height 

and diameter of trees (Marques et al. 2019; Vasconcellos et al. 2019; Zuidema et al. 2022). 

In addition, frequent reduction pruning, commonly practiced in urban trees that are under 

power lines (Carvalho Maria et al. 2021), can interfere not only with the canopy 

architecture, but also reduce the leaf coverage area, reducing the proportion of leaves and, 

consequently, photosynthetic rates. Therefore, the possibility of relating tree growth with 

air quality indices, such as the emission of particulate matter and total suspended particles, 

for example, may be an alternative to better understand the interference of pollution in the 

growth of urban trees. 

The trees in the southeast region may have received less influence from urban and 

industrial pollution because the predominant wind direction in Volta Redonda was from 

southeast to northwest, according to the wind rose diagram for the region, built with the 

available data by INEA, between 2001 and 2018. Gioda et al. (2004), when evaluating the 

air quality in the city of Volta Redonda between some periods (the years 1995, 1996, and 

1999), observed that the wind direction was east to west, so air pollutants would converge 

from east to west. The same authors also found that the concentration gradient of total 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Neto et al. (2023). “The influence of rainfall,” BioResources 18(3), 4771-4789.  4783 

suspended particles (TSP) was lower on the windward side of the steel industry than on the 

leeward side, reinforcing the hypothesis that the trees located in the northwest region would 

be receiving more interference from atmospheric pollution. 

The sensitive behavior of trees in the northwest region as a function of precipitation 

may be related to the loss of leaves during the dry season. T. catappa trees are briefly 

deciduous during this season and, in some environments, can lose their leaves twice a year 

(Stahle 1999). The leaf surface, in turn, works as an efficient device for the deposition of 

pollutants, as they are highly exposed parts (Sytar 2013). In this sense, precipitation plays 

a significant role during the rainy season, as it helps to remove pollutants deposited on leaf 

surfaces, contributing to the effective growth of tree individuals. Therefore, the most 

expressive results of the growth indices in relation to precipitation observed during the 

transition from the dry season to the rainy season, may mean that the growth of T. catappa 

occurred in response to the rainy season of the previous year and that the trees present in 

the region considered most affected by pollution (NW) may be dependent on this climatic 

factor. 

 
 
CONCLUSIONS 
 

1. The dendrochronological study of the species indicated sensitivity to precipitation and 

temperature in an area more exposed to steel pollution by the possible interference of 

winds throughout the year, and it is suggested that factors related to atmospheric 

pollution may interfere with the growth of this species in an urban environment. 

2. The species can be considered tolerant to the anthropic environment because of the 

longevity of the individuals analyzed under different environmental conditions.  

3. The delimitation of the annual rings of the species in this research contributes to the 

realization of future dendrochronological studies, expanding the understanding of the 

behavior of this species at different regional scales. 
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