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Different types of wood defects correspond to different processing 
methods. Good classification means can transform defective boards into 
practical boards after appropriate processing. The detection accuracy of 
the wood surface defects is particularly important for improving the 
utilization rate and speed of processing the boards. The RegNet stands 
out in the field of computer vision. It automatically designs the network 
model based on the design space and applies it to wood defect detection, 
which can improve the classification accuracy. When the convolutional 
structure of the RegNet network is applied to industrial detection and 
classification, the problems of long real-time detection time and large 
algorithm parameters persist. This study focuses on collecting wood 
material images of common coniferous and broad-leaved trees in 
Northeast China with three types of defects: wormholes, slip knots, and 
dead knots. To improve the allocation of computing resources, based on 
the RegNet network model, an attention mechanism module was added, 
and the Ghostconv structure was introduced. The structure quickly and 
accurately highlighted the types of wood defects, improved the 
classification accuracy, reduced the parameters of the network, and 
exhibited generalization ability. To verify the performance of the improved 
network, MobileNet-v2, EfficientNet, and Vision-Transformer networks 
were introduced for comparative analysis. The improved RegNet network 
had smaller weight and higher accuracy, with a classification accuracy of 
96.58%.  
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INTRODUCTION 
 

Wood defects refer to the general names of various characteristics that reduce the 

commodity and use value of wood. According to the formation mode, wood defects can be 

divided into growth, biological hazard, and processing defects (Liu 2008; Diao et al. 2012; 

Luo and Sun 2019; Yan et al. 2022). Different types of board defects have different wood 

processing methods, which are convenient for the subsequent processing, production, and 

daily use of wood. The traditional method of manually identifying wood defects involves 

a large workload and is time-consuming, which is a huge demand on human and material 

resources. With improvements in computing technology, convolutional neural network 

provides convenient conditions for image recognition and classification. Many excellent 

algorithm models have significantly progressed in visual recognition. Zhang et al. (2021) 

designed an improved LeNet-5 model that can accurately classify common defects and 

defect-free samples of wood by increasing the network depth and batch normalization. Shi 
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et al. (2020) proposed a method combining adaptive component analysis and deep 

migration feed forward neural network to effectively migrate the spectrum and defect 

corresponding knowledge of other tree species to the target classifier and improve the 

performance of the classifier. Riana et al. (2021) used K-means to segment wood defect 

images, extracted six texture and shape features using the gray level co-occurrence matrix 

(GLCM) method, and calculated the shortest distance between the feature values of the test 

set and the training set using the Euclidean distance method to achieve the purpose of 

identifying wood defects (Riana et al. 2021). At the 2017 ICLR conference, Barret Zoph 

and his research team presented the NAS algorithm for the first time, using the controller 

RNN model to create a string describing the network structure, and then using the policy 

gradient algorithm to update the control variables to maximize the accuracy of the created 

network (Zoph and Le 2016). After experimental verification, in some fields of artificial 

intelligence, such as image classification (Zhang et al. 2021) target detection (Wang et al. 

2020), semantic segmentation (Hu et al. 2022), and other fields, Guo et al. (2020) proposed 

a multichannel image segmentation method for wood knot defects based on the TVCV 

model. This method controls the range of the active contour via regularization parameters 

to capture the object. Furthermore, it uses the multi-channel weighted level set as the initial 

value, iterates with the TVCV model, and finally considers the calculated value as the 

segmentation result. The segmentation effect of the model is better. The aforementioned 

model is designed manually, and the design of the network model is mainly reflected in the 

application of network layer operators. Furthermore, the performance optimization process 

of the model is accidental and uncertain. 

Network design has changed from manual exploration process to automatic 

network design, and several automatic search network structure models have been 

developed. For example, Gong et al. (2019) combined a neural architecture search (NAS) 

with a generative adversarial network (GAN), defined the search space of GAN network 

structure change, used an RNN controller to guide structure search, and combined 

parameter sharing and dynamic reset strategy to improve training speed. Sun et al. (2020) 

proposed a method to solve the image classification problem by using a genetic algorithm 

to evolve the structure and connection weight initialization value of a deep convolution 

neural network. In this algorithm, an effective variable length gene coding strategy is 

designed to represent the different building blocks and potential optimal depth of 

convolution neural network. Li et al. (2020) proposed a sequential greedy architecture 

search (SGAS) algorithm to automatically design the architecture of CNN and GCN. By 

considering the heuristic criteria of edge importance, selection certainty and selection 

stability, they solved the two-level optimization problem in NAS in a greedy manner. 

Although the aforementioned method uses an automatic design network algorithm, it still 

has the disadvantage of relying on a manually designed network model structure. 

The RegNet network is an automatic search design model proposed by Kaiming He 

(Radosavovic et al. 2020). The network and its related network models exhibited good 

results in the field of computer vision, which can automatically design the network 

framework in a design space to simplify the task of deep learning. However, the application 

of rapid detection of wood defects still persists with the problem of long real-time detection 

time. In this study, the goal was to use the RegNet network with an increased attention 

mechanism to identify the types of wood defects, such as wormholes, slip knots and dead 

knots, and adjust the partial convolutional structure of the bottleneck network to further 

improve the classification accuracy of wood defects, reduce the detection time and reduce 

the algorithm parameters. Based on the requirements of computer hardware, in this study, 
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a reference is provided for the industrial application of the rapid classification of wood 

defects. 

 

 

EXPERIMENTAL 
 
Data Set Construction 

Data set construction was based on the early wood defect research sample set of the 

project team (Xie 2014), which was supplemented with common coniferous and broad-

leaved samples from Northeast China. The team collected wormhole, live knot, and dead 

knot samples to establish a small database that was divided into training, validation, and 

test sets in a 6:2:2 ratio. Owing to the small number of samples in the dataset, it was not 

suitable for deep learning. The samples in the training, validation and test sets were 

processed using rotation, translation, scale transformation, and gray transformation to 

expand the sample database (Ling and Xie 2022). After capacity expansion, the training 

set contained 3,310 sample data, the validation set contained 1,054 sample data, and the 

test set contained 1,054 sample data. Some samples of the dataset are shown in Fig. 1. 

 

 
Fig. 1. Samples of defective part of a wood 

 

NAS Algorithm 
Prior to its introduction, the RegNet model was used. First, the neural architecture 

search algorithm (NAS) was introduced. In deep learning, hyperparameters are divided into 

two categories: training parameters and parameters that define the network structure. The 

training parameters include the learning rate, batch size, attenuation weight, and other 

parameters. The automatic tuning of the training parameters belongs to hyperparameter 

optimization (HO). The parameters defining the network structure include the layer 

structure operator, convolution kernel size, dimension, and dispersion degree. Automatic 

optimization of network structure parameters is generally termed neural architecture search 

(NAS). 

The classic NAS algorithm includes three aspects: search space, search strategy, 

evaluation, and prediction. The search strategy is selected based on search space. When the 

strategy is determined, the designed network structure is evaluated and predicted, and it 

continues to strengthen the search for a better network model, which corresponds to the 

NAS algorithm. Figure 2 shows the rules of the NAS algorithm. 

(a) Wormhole   (b) Slip Knots       (c) Dead knots 
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Fig. 2. NAS algorithm 

 

Search space  

In principle, using the NAS algorithm, a space composed of all potential network 

structure models is defined as the search space. The neural network architecture searches 

the network model structure parameters that can be optimized, including the number of 

layers n, type of operation performed by layers, and the super parameters in the layer 

structure. 

 

Search strategy 

Given the search space, the best neural network structure can be determined using 

the corresponding search strategy. The common search strategies include reinforcement-

based learning, evolutionary algorithms, Bayesian optimization algorithms, and gradient-

based methods (Jin et al. 2019). 

 

Evaluation and prediction 

The purpose of the search strategy involves designing a good network structure and 

ensuring that the network structure exhibits the highest accuracy in the test set. To 

strengthen the search process, the search strategy must evaluate the performance of a given 

network structure. 

 

RegNet Model 
The RegNet model uses the neural architecture search algorithm (NAS) to obtain a 

low-dimensional design space composed of a simple rule network in a relatively 

unconstrained design space by using the man-machine rotation method. This design space 

is termed as RegNet space (Han et al. 2020). The central idea of the RegNet design space 

is that the width and depth of the model are determined by a quantitative linear function. 

The structure block diagram of RegNet network is shown in Fig. 3. 

The network is mainly composed of stem, body, and head. 

 

Stem  

The stem is composed of a convolution layer containing a BN layer and ReLU 

activation function. The size of the convolution kernel is 3×3. The step length is two and 

the number of convolution kernels is 32. 

 

Body  

The body is composed of four-stage stacks, and each stage is stacked with a large 

number of blocks. In this stage, in the main branch and shortcut branch of the first block 

part of the stage, there is a group convolution with two steps, and the number of convolution 

steps for the other block parts corresponds to one. 
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Head  

The head is composed of a global average pooling layer and full connection layer 

as part of the classifier in the classification network. 

 

 
Fig. 3. Processing flow of the RegNet network model 

 

The main branch of the block module of the RegNet model is a 1 × 1 convolution 

kernel. The group convolution of 1 (including BN and ReLU) and one convolution kernel 

is 3×3. The group convolution of three (including BN and ReLU) and one convolution 

kernel is 1×1 (including BN). On the shortcut branch, when stride = 1, the input data 

information is not processed. When stride = 2, the input data is processed via a convolution 

kernel 1 × 1 (including BN) to down sample the information. The block module structure 

of the RegNet model is shown in Fig. 4. 

In Fig. 4, r denotes the resolution, which can be understood as the height and width 

of the characteristic matrix. When stride = 1, the input and output r are equal, and when 

stride = 2, the output r is half that of the input. Specifically, w denotes the number of 

channels in the characteristic matrix, g denotes the group width in the group convolution, 

b denotes the bottleneck ratio, and the number of channels in the output characteristic 

matrix is reduced to the number of channels 1/b of the output characteristic matrix. The 

image data of wood defects are input into the group convolution module of the stem part 

of the RegNet network, and feature extraction, recognition, and classification were 

performed according to the network structure. 

 

(a) Network            (b) Body           (c) Stage i 
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Fig. 4. Block module structure in RegNet mode 

 

Improved RegNet Model 
To solve the problem of limited computing power, computing resources are 

allocated to more important tasks, and the problem of information overload is solved 

simultaneously. In this study, an attention mechanism module was added to the RegNet 

network. In computer vision, the attention mechanism module was mainly divided into a 

spatial attention module, channel attention module, position pixel attention module, and 

hybrid attention module. The spatial attention module adjusts the self-attention of each 

position of the feature map, (x, y) two-dimensional adjustment, to ensure that the model 

focuses on the areas worthy of higher attention. The channel attention module allocates 

resources to each convolution channel and adjusts the z-axis in one dimension. The position 

pixel attention module focuses more on the correlation between the pixels on the feature 

map and other pixels and realizes a global response to the output. 

Squeeze-and-excitation networks belong to the channel attention module. The 

attention mechanism was divided into two steps: squeeze and exception. In squeeze step, 

the global compressed feature of the current feature map is obtained by performing global 

average pooling on the feature map layer. The excitation step is used to obtain the weight 

of each channel in the feature map via the two-layer fully connected bottleneck structure. 

Furthermore, weighted feature map is used as the input of the next layer network.  

Efficient channel attention also belongs to the channel attention mechanism. 

Efficient channel attention avoids the dimensionality reduction due to channel compression, 

uses 1D convolution to efficiently realize local cross-channel interaction, and extracts the 

dependencies between channels. 

After the group convolution structure in the block module of the RegNet model 

network, in this study, the attention mechanism module NAM (Liu et al. 2021) was added. 

Specifically, NAM adopts the module integration mode, including the channel attention 

submodule and spatial attention submodule. A schematic diagram of the channel attention 

of the NAM module is shown in Fig. 5(a), and a spatial attention schematic diagram is 

shown in Fig. 5(b). 

(a) X block, s=1              (b) X block, s=2 
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Fig. 5. Attention sub module of NAM module 

 

In the channel attention submodule, the scaling factor is added in batch 

normalization. The scaling factor reflects the degree of change in each channel and its 

importance. The mathematical relationship of the scaling factor is as follows, 

β
εσ

μB
γ)B(BNB

2

B

Bin
inout +

+

−
==                        (1) 

where Bin and Bout denote batch input and output feature data; )(BN   denotes the Batch 

Normalization function; Bμ  and Bσ  denote the average value and standard deviation of 

batch B, respectively; γ  denotes the scale transformation coefficient of affine 

transformation; β  denotes the displacement transformation coefficient of affine 

transformation; and ε prevents the variance from being 0, resulting in invalid calculation. 

The calculation principle of the channel attention submodule is as follows: 

)))F(BN(W(sigmoidM 1γc =                            (2) 
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where F1 denotes the input feature; Mc denotes the output feature ; γ denotes the scale factor 

of each channel; )(BN   denote the Batch Normalization function; )(sigmoid   denotes the 

sigmoid function; and the weight γW  represents the scale factor of the BN and importance 

of the pixels. The calculation formula can be expressed as follows, 


=

=

0j

j

i
γ

γ

γ
W                                   (3) 

where ji γ,γ  denotes the scale transformation coefficient of affine transformation. The 

calculation principle of the spatial attention submodule is shown in as follows, 

)))F(BN(W(sigmoidM 2sλs =                            (4) 

where F2 denotes the input feature; MS denotes the output feature; )(BNS   denotes the 

Batch Normalization function; )(sigmoid   denotes the sigmoid function; λ  denotes the 

scale factor of each channel, and the weight λW
 
is as follows: 


=

=

0j

j

i
λ

λ

λ
W                                 (5) 

To suppress the small weight and prevent overfitting, a regularization term is added 

to the loss function, as shown in Eq. 6. In the equation, x denotes the input, y denotes the 

output, W denotes the network weight, loss denotes the loss data, )(l   denotes the loss 

function, )(f   denotes the activate function, )(g   denotes the L1 norm penalty function, and 

p denotes the punishment for balancing )γ(g  and )λ(g  follows: 

  ++=
)y,x(

)λ(gp)γ(gp)y),W,x(f(lLoss

               

     (6) 

The output feature map of the convolution layer usually includes considerable 

redundancy. A large number of experiments demonstrated that the generation of these 

redundant feature maps individually with a large amount of traffic and parameters is a 

waste of computing and hardware storage resources (Han et al. 2020). To solve the problem 

of redundancy in the output characteristic diagram of the convolution layer, in this study, 

the Ghostmodule was introduced into the body part of the RegNet network. The 

Ghostmodule is a method of model compression, i.e., while ensuring network accuracy, it 

can effectively reduce the network parameters and amount of calculation for improving the 

calculation speed and reducing the delay effect. In the improved model, the Ghostmodule 

was embedded in the bottleneck part of the RegNet network to replace some group 

convolution structures in the network. 

The operating principle of the Ghostmodule convolution is shown in Fig. 6. The 

calculation of the module includes two steps. The first part is the ordinary convolution of 

the input features and the second part is the separation convolution of the results of the first 

part. Based on the calculation results of the two parts, the feature fusion between channels 

is conducted via concat. The block module structure in the improved RegNet model is 

shown in Fig. 7. 
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Fig. 6. Ghost module principle 

 

 

 
Fig. 7. Block module structure in the improved RegNet model 

 
Experimental Process 

The hardware and software environment of the experiment is shown in Table 1. 

The training set samples in the wood defect sample dataset were input into the above test 

network to obtain the training weight. The validation set samples were placed in the wood 

defect samples in each network to automatically adjust the appropriate super parameters. 

(a) X block, s=1              (b) X block, s=2 
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Finally, the test set samples were placed into each network model with the best training, 

and the most suitable network model was obtained for this dataset. During the experiment, 

it was necessary to control the consistency of other super parameters, and finally, to 

compare the test set accuracy of each model, number of network parameters, and various 

evaluation performance indexes of the model. 

 

Table 1. The Hardware and Software Environment of the Experiment 

Experimental environment Version Details 

GPU model NVIDIA GTX980 

CPU model Intel(R)Core (TM) i5-6300HQ CPU@2.30GHz 

Memory size 4G 

System Version Windows 10 

programming language Python 3.8.0 

Python version Pytorch 1.7.1 

 

The experiment was completed in two steps. First, the classification performance 

of RegNet, RegNet+SE, RegNet+ECA, RegNet+NAM, and GhostRegNet+NAM 

networks were compared to select high-performance classification networks. Then, the 

selected network, MobileNet-v2, EfficientNet, and Vision-Transformer networks were 

selected twice to find the best network model suitable for the wood defect classification.  
 
 
RESULTS AND DISCUSSION 
 

To demonstrate the role of the attention mechanism in network applications, the 

test set samples of various wood defects were input into the GhostRegNet+NAM network 

model, and the visual thermal diagram of the Nam attention mechanism was drawn by the 

Grad-CAM network, as shown in Fig. 8. 

 

 
Fig. 8. Thermodynamic diagram of attention mechanism of various samples in the test set 

 

Experimental Data and Results 
The training set samples were placed into the test network and the number of 

experimental epochs was set to 120, the number of learning rate was set to 0.001, and the 

number of batch size was set to 32 for comparative experiments. 

 

 

 

(a) Dead knot   (b) Wormhole        (c) Slip knot 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Xie & Ling (2023). “Wood defect classification,” BioResources 18(4), 7663-7680.  7673 

(a)

 

(b)

 

(c)

 

(d)

 

 
Fig. 9. Loss function and accuracy of networks (a) Loss function and accuracy of GhostRegNet 
+NAM network (b) Loss function and accuracy of RegNet network (c) Loss function and accuracy 
of RegNet+SE network (d) Loss function and accuracy of RegNet+ECA network 
 

(1) RegNet network realized wood defect classification. In the 108th epoch, the 

accuracy of the validation set was highest at 95.2%. The training set loss function and 

validation set accuracy of the RegNet network are shown in Fig. 9(b). 

(2) RegNet+SE network classified the classification of wood defects. In the 105th 

epoch, the accuracy of the validation set was the highest, with a maximum accuracy of 

95.9%. The training set loss function and validation set accuracy of the RegNet+SE 

network are shown in Fig. 9(c). 

(3) RegNet+ECA network realized the classification of wood defects. In the 116th 

epoch, the accuracy of the validation set was the highest, with a maximum accuracy of 

95.2%. The training set loss function and validation set accuracy of the RegNet+ECA 

network are shown in Fig. 9(d). 

(4) RegNet+NAM network realized wood defect classification. In the 113th epoch, the 

accuracy of the validation set was the highest, with a maximum accuracy of 96.2%. The 

training set loss function and validation set accuracy of the RegNet+NAM network are 

shown in Figure 10(a). 

(5) GhostRegNet+NAM network realized wood defect classification. In the 107th 

epoch, the accuracy of the validation set was the highest, with a maximum accuracy of 

96.3%. The training set loss function and validation set accuracy of the 

GhostRegNet+NAM network are shown in Fig. 9(a). 
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(a)

 

(b)

 

(c)

 

(d)

 
 
Fig. 10. Loss function and accuracy of networks (a) Loss function and accuracy of RegNet+NAM 
network (b) Loss function and accuracy of MobileNet-v2 network (c) Loss function and accuracy of 
EfficientNet network (d) Loss function and accuracy of Vision-Transformer network 

  

The training set samples were placed into the Mobilenet-v2, EfficientNet, and 

Vision-Transformer networks. The number of experimental epochs was set to 120, the 

number of learning rate was set to 0.001, and the number of batch size was set to 32 for 

comparative experiments. 

(1) MobileNet-v2 network realized wood defect classification. In the 118th epoch, the 

accuracy of the validation set was the highest, with a maximum accuracy of 92.4%. The 

training set loss function and validation set accuracy of MobileNet-v2 network are shown 

in Fig. 10(b). 

(2) EfficientNet network realized wood defect classification. In the 103rd epoch, the 

accuracy of the validation set was the highest, with a maximum accuracy of 94.2%. The 

training set loss function and validation set accuracy of EfficientNet network are shown in 

Fig. 10(c). 

(3) Vision-Transformer networks realized wood defect classification. In the 115th 

epoch, the accuracy of the validation set was the highest, with a maximum accuracy of 

94.6%. The training set loss function and validation set accuracy of Vision-Transformer 

network are shown in Fig. 10(d). 

 

Model Evaluation Index 
The weight of the highest accuracy on each network model training set was saved, 

which was convenient for the test set to identify and predict the category of wood defect 
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samples. TP represents the positive sample, predicted as positive by the model, TN 

represents the negative sample, predicted as negative by the model, FP denotes the negative 

sample, predicted as positive by the model, and FN denotes the positive sample predicted 

as negative by the model. A confusion matrix diagram can be drawn based on the prediction 

and classification of the various samples. Using TP, TN, FP, and FN, performance indices, 

such as accuracy, recall, and specificity were obtained, where the accuracy rate denotes the 

ratio of the number of positive samples correctly predicted to the number of positive 

samples predicted as follows: 
 

FPTP

TP
precision

+
=                             (7) 

The recall rate refers to the ratio of the number of correctly predicted positive 

samples to the total number of real samples. 

FNTP

TP
recall

+
=                              (8) 

Specificity 

As the specificity increases, the probability of false detections decreases. 

FPTN

TN
yspecificit

+
=                              (9) 

 
Fig. 11. Networks confusion matrix (a) GhostRegNet + NAM network confusion matrix (b) RegNet 
network confusion matrix (c) RegNet+SE network confusion matrix (d) RegNet + ECA network 
confusion matrix 

 

(a)

 

(b)

 
(c)

 

(d)
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Model Performance Analysis 
The predictions of RegNet, RegNet+SE, RegNet+ECA, RegNet+NAM, 

GhostRegNet+NAM, MobileNet-v2, EfficientNet, and Vision-Transformer networks on 

the test set of wood defects are shown in the confusion matrix Figs. 11 and 12, respectively. 

The abscissa of the confusion matrix figure represents the real label of the sample and the 

ordinate represents the predicted label of the sample. By using the confusion matrix 

predicted by each model on the test set and color depth of the color block of the confusion 

matrix, it can be intuitively observed that the prediction effect of the GhostRegNet+NAM 

network is better, and there are a large number of positive samples predicted as positive by 

the network model. 

 

(a)

 

(b)

 

(c)

 

(d)

 
 
Fig. 12. Networks confusion matrix (a) RegNet + NAM network confusion matrix 
(b) MobileNet-v2 network confusion matrix (c) EfficientNet network confusion matrix 
(d) Vision-Transformer network confusion matrix 

 

The performances of four RegNet network improved schemes are compared in 

Table 2. The GhostRegNet+NAM network exhibited the highest precision, recall, and 

specificity values for the three types of wood defects and lower false detection probability. 

The samples of the wood defect test were set into the sample library of the wood defect 

and the optimal weight pre-training model is trained on the set to obtain the recognition 

accuracy, network parameter quantity, and average image recognition time of four RegNet 

network improved schemes. A comparison of the data is presented in Table 3. Compared 

with other improved schemes, the parameters of GhostRegNet+NAM network are 
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significantly reduced, the average image recognition time was significantly reduced, and 

the recognition accuracy was improved. 

 

Table 2. Performance Comparison of RegNet network, RegNet+SE network, 
RegNet+ECA network, RegNet+NAM network, and GhostRegNet+NAM network 

Model 
Types of 
Defects 

Precision Recall Specificity 

RegNet 

Wormhole 0.933 0.944 0.968 

Slip Knot 0.966 0.969 0.983 

Dead Knot 0.946 0.933 0.973 

RegNet+SE 

Wormhole 0.952 0.935 0.978 

Slip Knot 0.961 0.969 0.98 

Dead Knot 0.939 0.947 0.968 

RegNet+ECA 

Wormhole 0.895 0.930 0.948 

Slip Knot 0.967 0.913 0.984 

Dead Knot 0.901 0.919 0.948 

RegNet+NAM 

Wormhole 0.942 0.959 0.972 

Slip Knot 0.963 0.952 0.981 

Dead Knot 0.935 0.93 0.967 

GhostRegNet+NAM 

Wormhole 0.954 0.965 0.978 

Slip Knot 0.986 0.969 0.993 

Dead Knot 0.958 0.963 0.979 

 

Table 3. Comparison of Accuracy, Network Parameters, and Average Image 
Recognition Time of Regnet Network, Regnet+SE Network, Regnet+ECA 
Network, Regnet+NAM Network, and Ghostregnet+NAM Network on the Test 
Set 

Model Accuracy Parameter Infer 

RegNet 94.88% 2.32M 0.046s 

RegNet+SE 95.07% 2.8M 0.047s 

RegNet+ECA 92.03% 2.32M 0.043s 

RegNet+NAM 94.69% 2.32M 0.036s 

GhostRegNet+NAM 96.58% 1.86M 0.034s 

 

Table 4. Performance Comparison of Mobilenet-V2 Network, Efficientnet 
Network,Vision-Transformer Network And Ghostregnet+NAM Network 

Model 
Types of 
Defects 

Precision Recall Specificity 

MobileNet-v2 

Wormhole 0.89 0.953 0.944 

Slip Knot 0.952 0.95 0.976 

Dead Knot 0.937 0.876 0.97 

EfficientNet 

Wormhole 0.895 0.977 0.945 

Slip Knot 0.997 0.964 0.999 

Dead Knot 0.95 0.899 0.976 

Vision-Transformer 

Wormhole 0.944 0.935 0.973 

Slip Knot 0.977 0.969 0.989 

Dead Knot 0.934 0.949 0.966 

GhostRegNet+NAM 
 

Wormhole 0.954 0.965 0.978 

Slip Knot 0.986 0.969 0.993 

Dead Knot 0.958 0.963 0.979 
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To verify the performance of GhostRegNet+NAM network model, this study 

introduced the comparative analysis of MobileNet-v2, EfficientNet, and Vision-

Transformer networks, as shown in Table 4. 

According to Table 4, the recall rate, specificity, and false detection probability of 

GhostRegNet+NAM network were still higher than those of MobileNet-v2, EfficientNet, 

and Vision-Transformer networks. The recognition accuracy, network parameter quantity, 

and average image recognition time of the MobileNet-v2, EfficientNet, and Vision-

Transformer networks are presented in Table 5. 

 

Table 5. Comparison of Accuracy, Network Parameters, and Average Image 
Recognition Time of MobileNet-v2 Network, EfficientNet Network,Vision-
Transformer Network and GhostRegNet+NAM Network on the Test Set 

Model Accuracy Parameter Infer 

MobileNet-v2 92.60% 4.01M 0.070s 

EfficientNet 94.59% 2.23M 0.081s 

Vision-Transformer 95.16% 85.80M 0.081s 

GhostRegNet+NAM 96.58% 1.86M 0.034s 

 

Compared with the other two networks, the accuracy of GhostRegNet+NAM 

network was as high as 96.58%, the amount of network parameters was only 1.86 M, and 

the average image recognition time was 0.034 s. While reducing the model weight, the 

detection speed and accuracy are improved. 

From Table 5, it can be seen that GhostRegNet+NAM network achieved higher 

accuracy and could accurately classify plate defect models. At the same time, the 

classification time was relatively short. Wood defect detection is often used for industrial 

optimizing saw for online sorting of woods. Modern industrial production lines have track 

feed speeds of up to 120m/min, and it is very important to improve the speed even at 

millisecond level. Meanwhile, the params of GhostRegNet+NAM network are minimal, 

which can alleviate computational pressure for computational power. 

 

 

CONCLUSIONS 
 
1.  The GhostRegNet+NAM network model can distinguish the types of wood defects, 

and the classification accuracy is high.  

2.  To verify the performance of the model, MobileNet-v2, EfficientNet, and Vision-

Transformer networks are introduced for comparison. GhostRegNet+NAM model is 

still better than the comparison networks with less parameters. 

3.  The GhostRegNet+NAM network model in distinguishing the types of sample defects 

with high accuracy and fewer network parameters is determined. This can effectively 

reduce the detection time and reduce the hardware requirements of the algorithm, which 

is robust and practical.  

4.  A training overfitting phenomenon was encountered. By adding a regularization term 

in the process of calculating the loss function of the attention mechanism NAM, this 

problem can be effectively solved. However, during the learning process of the training 

set, the loss function fluctuated slightly.  
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