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Effect of Metal Oxides on Reaction Route and Product 
Distribution of Catalytic Cellulose Hydrogenolysis 
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The effects of CeO2, ZrO2, Nb2O5, and ZnO catalysts supported on carbon 
nanotubes (CNT) relative to cellulose hydrothermal hydrogenolysis in the 
presence of Ni/CNT and pressured H2 was studied in this work. The 
catalysts were characterized by inductively coupled plasma – optical 
emission spectrometry, X-ray diffraction, X-ray photoelectron 
spectrometry, transmission electron microscopy, NH3 temperature 
programmed desorption (TPD), and CO2-TPD. Glucose and its isomers 
were detected by mass spectrometry. The results showed that redox 
active CeO2/CNT with strong Lewis acid and strong Lewis base sites was 
active in C-C bong cracking, isomerization, dehydrogenation, and 
hydrodeoxygenation reaction, yielding 36.3% ethylene glycol and 17.2% 
1,2-propylene glycol. The ZnO/CNT with Bronsted base accelerated 
isomerization, retro-aldol condensation, and dehydrogenation, yielding 
20.7% 1,2-propylene glycol, 17.8% ethylene glycol, and 12.7% 
tetrahydrofuran dimethanol. The Nb2O5/CNT and ZrO2/CNT were inert to 
C-C bond cracking, whereas H+ in hot compressed water and the Bronsted 
acid in Nb2O5/CNT accelerated dehydration, yielding more sorbitol and 
sorbitans. The results provide reference for catalyst selection and product 
regulation in cellulose hydrogenolysis. 
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INTRODUCTION 
 

Biomass conversion, if carried out appropriately, offers the attractive feature of 

carbon neutrality. Catalytic degradation of cellulose to chemicals has attracted much 

attention in recent years. Hydrogenation can transform generated glucose to more stable 

compounds such as sorbitol, prevent the formation of humin (Maruani et al. 2018), and 

then increase the yields of products. Cellulose could be selectively converted to sorbitol, 

ethylene glycol (EG), and 1,2-propylene glycol (1,2-PG) by catalytic hydrogenation 

reactions (Sun et al. 2016; Lazaridis et al. 2017; Li et al. 2017; Gu et al. 2019; Li et al. 

2019; Zan et al. 2019; Zhang et al. 2019; Zheng et al. 2017). By far, the highest yields of 

sorbitol, EG, and 1,2-PG are reported as 91% (Shrotri et al. 2018), 77.5% (Li et al.2018), 

and 39% (Xiao et al. 2013), respectively. Sorbitol has been identified as one of the twelve 

most important building blocks derived from biomass resources, EG and 1,2-PG are raw 

materials for polymer industry. Cellulose catalytic hydrogenation into chemicals is an 

attractive alternative in its valorisation. 

The catalytic hydrogenation of cellulose mainly includes the following steps: (1) 

cellulose hydrolyzed to glucose in the presence of H+, (2) glucose hydrogenated to sorbitol 
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with the catalysis of Ni, or noble metal atom, (3) sorbitol dehydrogenated back to hexose, 

or dehydration to sorbitan, (4) glucose isomerized to fructose in the presence of base or 

Lewis acid (Delidovich and Palkovits 2016; Nguyen et al. 2016), (5) glucose and fructose 

experienced Retro-Aldol Condensation (RAC), C-C breaking took place, formed lower 

aldose and ketose such as erythrose, glycolaldehyde, glyceraldehyde, 1,3-

dihydrocyacetone, etc. (6) The products of RAC have been hydrogenated and dehydrated 

to EG, 1,2-PG, etc. 

Isomerization and RAC are accelerated by base catalyst; however, homogeneous 

alkali catalysis will neutralize with H+ and hinder cellulose hydrolysis (Li et al. 2015). 

Metal oxides possess Lewis acid and basic sites, which catalyze isomerization and RAC 

reaction with no discount of cellulose conversion. The acid-base property of sparingly 

soluble oxides in contact with aqueous solutions are chiefly determined by the isoelectric 

point of solid surface (IEPS). For some metal oxides, the IEPS values are rather constant. 

The IEPS values of CeO2, ZnO, ZrO2, and Nb2O5 were reported as being 8.1, 9.2, 7.8, and 

4.1 (Kosmulski 1997). These findings mean that suspension of ZnO and Nb2O5 are 

Brønsted base and acid, respectively. CeO2 is known as an oxygen storage substance 

(Montini et al. 2016). ZrO2 is a compound rich in Lewis acid and base sites (Huang et al. 

2019). Carbonaceous materials are hydrothermal stable even at elevated temperatures 

(Pham et al. 2015). Carbon nanotubes and surface functionalized biochar were found to 

work well as catalyst support on hydrothermal conversion of biomass (Chen et al. 2017; 

Liu and Liu 2020). The effects of typical metal oxides catalysts such as CeO2/CNT, 

ZnO/CNT, ZrO2/CNT, and Nb2O5/CNT on the reaction route and product distribution of 

cellulose catalytic hydrogenation were studied in this paper. 

 

 
EXPERIMENTAL 
 

Materials 
Microcrystalline cellulose, Ce(NO3)3.6H2O, ZrO(NO3)2.6H2O, NbCl5, 

Ni(NO3)2.6H2O, Zn(NO3)2.6H2O, citric acid, EG, 1,2-PG, tetrahydrofuran dimethanol 

(THFDM), sorbitol, glucose, mannose, fructose, and 1,4-sorbitan were purchased from 

Sigma-Aldrich. They were all analytical reagents. Carbon nanotubes (CNT) were from 

Chengdu Organic Chemicals Co. Ltd, China. 

 

Preparation of Catalyst 
To remove mineral impurities, CNT was pretreated with 65% nitric acid as 

previously described (Van der Wijst et al. 2015), briefly, boiled for 30 min, then washed 

with deionization water until the filtrate was neutral. A complex solution was composed 

by mixing the metal salt (Ce(NO3)3.6H2O, ZrO(NO3)2.6H2O, NbCl5, Ni(NO3)2.6H2O, or 

Zn(NO3)2 •6H2O), citric acid (CA), EG and deionized water in an ultrasonic bath for 10 

min. The molar ratios between the three components Metal:CA:EG used were 7:8:8. The 

complex solution was introduced to the CNTs in isometric impregnation, with the ratio of 

4.32 mmol metal to 1 g CNT. Metal salts/CNT precursor dried in room temperature for 12 

h and at 110 °C for 12 h, then calcinated for 10 min at 400 °C in air flow to form metal 

oxide (MOx)/CNT. The heating and cooling were done in pure N2 flow with a heating rate 

of 10 °C/min. For NiO/CNT, reduction was carried out in H2 gas for 5 h at 400 °C to form 

Ni/CNT. 
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Characterization of Catalyst 
The contents of metal in the catalyst were determined by Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP-OES) (Thermo IRIS intrepid Ⅱ). 0.010 g of 

catalyst was dissolved in acid solution (40% HF for ZrO2/CNT and Nb2O5/CNT, 6 mol/L 

HNO3 for CeO2/CNT, diluted HNO3 for Ni/CNT and ZnO/CNT), digested for 60 min (90 

°C for CeO2/CNT and ZrO2/CNT, 25 °C for other catalysts), and diluted with water to 25 

mL. 1 mL of supernatant was taken, diluted to the second 25 mL, and the solution was 

collected for the detection. X-ray photoelectron spectroscopy (XPS) analyses were carried 

out with a PHI Quantera SXM X-ray photoelectron spectrometer using a monochromatic 

Al-Ka X-ray source. The phase structure of the catalyst was determined by powder X-ray 

diffraction (XRD) spectroscopy (Bruker D8 Advance) using a Cu-Ka radiation (k = 0.154 

nm), the data ranging from 5 to 80 were collected at a step size of 0.02, and the particle 

size was investigated using the Scherrer Equation. The surface morphology and structure 

of the catalyst was collected by transmission electron microscope (TEM) (HITACHI-HT 

7700).  

Surface acid (base) properties of the catalysts were probed by NH3 (CO2)-

Temperature Programmed Desorption (TPD), CO2-TPD was performed on a Cat-Lab 

instrument (BEL, Japan) equipped with a well-calibrated quadrupole mass spectrometer 

(MS) (Inprocess Instruments, GAM 200) as the detector. The CO2 desorption profiles were 

obtained by recording the signal for molecular CO2 (m/z=44). NH3-TPD was performed on 

TPD-TPR instrument (Xianquan, China TP-5076) equipped with a TCD detector. The 

sample of 40 mg (50 mg) was purged with dry Ar (He) at 500 °C for 1 h, followed by 

reducing the reactor temperature to 100 °C (50 °C) and switching to a flow of 20% CO2/Ar 

(10% NH3/He) for 1 h to execute CO2 (NH3) adsorption. After purging for 1.5 h at 100 °C 

(several minutes at 50 °C) with flowing Ar (He) until the signal was constant, the sample 

was heated to 500 °C at a rate of 10 °C min-1, then kept for 30 min (90 min) to allow for 

desorption of adsorbed CO2 (NH3). MS intensity ratio of CO2 to Ar and the volume of Ar 

passed were used to quantify the CO2 desorption amounts. For NH3, the calibration was 

performed by injecting pulses of 10% NH3/He. The amounts of the acid and basic sites 

were analyzed based on mathematical deconvolution of the TPD profiles. 

 

Procedure for Cellulose Conversion 
The catalytic reactions were tested in a stirring batch reactor (Parr Instruments 

Company). Typically, a 300 mL batch reactor was used with deionized water (100 mL), 

microcrystalline cellulose (1.00 g), catalyst (Ni/CNT+MOx/CNT with the amount of Ni 

and MOx to be 0.81 mmol) and an initial H2 pressure of 60 bar. The reactor was closed and 

heated to T=245°C with a heating rate of 2 °C /min, which generated a pressure of 120 bar, 

and the system was kept at T=245 °C for 270 min. When the temperature was ramped to 

180, 210, and 240 °C, three samples were taken marked as 180C, 210C, and 240C. 

Alternatively, when the reaction went on for 15, 30, 45, 90, 150, 210, and 270 min at 245 

°C, samples taken were marked as 15M, 30M, 45M, 90M,150M, 210M, and 270M. After 

the reaction, the catalyst was retrieved from the reaction mixture using a quantitative 

ashless filter paper. The conversion of cellulose was calculated according to equation (1). 

The yields of product were calculated according to equation (2). The catalytic reactions 

were duplicated, the relative standard deviations of product yield were below 5% 

(yield>0.05). 
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𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝑊𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑎𝑑𝑑𝑒𝑑+𝑊𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑎𝑑𝑑𝑒𝑑−𝑊𝑟𝑒𝑠𝑖𝑑𝑢𝑒

𝑊𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑎𝑑𝑑𝑒𝑑
× 100%         (1) 

 

Product yield: 𝑌 =
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡×(𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

𝑚𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒×(𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒)
                    (2) 

 

where Wcellulose added and Wcatalyst added represent the weight (g) of cellulose and catalyst added, 

Wresidue represents the weight (g) of residue retrieved, containing used catalyst, mproduct 

represents the mass of product (g), for which the products were EG,1,2-PG, sorbitol, 

THFDM, and 1,4-sorbitan, mcellulose represents the mass of cellulose added (g). 

 

Analysis of Products 
HPLC (Agilent Technologies 1260 Infinity)-RID (differential refractive index 

detector) with a Hi-Plex Ca (Duo) 300 x 6.5 mm column was used to quantitatively detect 

the product, the concentration of product was obtained by one-point external standard 

method with the content of standard solution below 0.4 mg/mL. The relative standard 

deviation of the analytical method was below 1% (yield >0.05). To monitor glucose and 

its isomer, SIM mode evaluations (m/z=203) of all samples were conducted with a 

SHIMADZU LCMS 2010 EV.  

 

 
RESULTS AND DISCUSSION 
 
Characterization of the Catalyst 

The contents of metal in catalysts were detected by ICP-OES. As shown in Table 

S-1, the contents were close to those calculated by the amount of reactant. They were from 

2.29 to 3.05 mmol/g. The valences of metal in catalysts were identified by XPS spectrum 

(Fig S-1 to S-4). The binding energy of Ce3d indicated that CeO2 and Ce2O3 were 

coexistent, and other metal oxides were identified to be ZnO, Nb2O5, and ZrO2. The XRD 

patterns of catalyst are shown in Fig. 1.  
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Fig. 1. XRD profile of the catalysts 
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Metal oxide diffraction peaks were observed in profile of Ni/CNT (Ni, cubic, PDF 

00-004-0850), ZnO/CNT (ZnO, Hexagonal, PDF 01-075-0576), and CeO2/CNT (CeO2, 

cubic, PDF 01-075-0076). The particle size calculated by the Scherrer Equation were 12.4, 

17.5, and 3.3 nm, respectively. No diffraction peaks for metal oxides were observed in 

profile of ZrO2/CNT and Nb2O5/CNT, indicating that ZrO2 and Nb2O5 were amorphous. 

The morphology of the catalysts was collected by TEM (Fig. 2). TEM images showed that 

the particle sizes of Ni, ZnO, CeO2, Nb2O5, and ZrO2 were 14.5, 15.1, 5.7, 4.7, and 3.0 nm, 

respectively. 
(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 

(e) 

 
 

Fig. 2. TEM graph of the catalysts. (a). Ni/CNT; (b). ZnO/CNT; (c). CeO2/CNT; (d). ZrO2/CNT; 
(e). Nb2O5/CNT 

 

TPD was performed to probe Lewis acid and base sites of the catalysts. Table 1, 

Fig. S-5, and Fig.S-6 show the acid (base) concentration and strength of different catalysts. 

The most abundant base sites were found in CeO2/CNT, including weak, medium, and 

strong in strength. A few weak, medium, and strong basic sites were found in ZnO/CNT. 
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Many weak and a few strong basic sites were found in ZrO2/CNT. Only strong basic sites 

in Nb2O5/CNT were observed. A wide distribution of surface base sites from weak to strong 

were probed in all four catalysts, but the abundance in CeO2/CNT was far more than in the 

other three catalysts.  

 

Table 1. Concentration of Weak, Medium, and Strong Base and Acid Sites for 
Four Catalysts 

Catalyst 
Base sites (µmol CO2 g-1) Acid sites (µmol NH3 g-1) 

Weak Medium  Strong  total  Weak  medium  strong total 

CeO2/CNT 8.55  9.28  12.64  30.47  5.41  5.23  13.39  24.03  

ZrO2/CNT 4.35  - 2.62  6.97  2.95  0.60  0.50 4.05  

Nb2O5/CNT - - 2.62  2.62  3.88  1.14  0.20 5.22  

ZnO/CNT 0.36  0.51  1.27  2.14  0.86  - 1.20  2.06  

Weak: Desorption temperatures below 200 °C. Medium: Desorption temperatures at 200–400 °C. 
Strong: Desorption temperatures above 400 °C. 

 

Product Distribution 
The cellulose conversion 

The cellulose conversion was calculated based on the relative change of weight 

before and after the reaction. They were 100% for all four types of catalysts when the 

reaction time was 270 min. When the reaction time was 30 min, cellulose conversions were 

70.0%, 75.7%, 79.1%, and 91.2% for ZrO2/CNT, CeO2/CNT, Nb2O5/CNT, and ZnO/CNT.  

 

Glucose and its isomerization 

Isomerization have been demonstrated to take place in hot compressed water (Lu 

et al. 2012; Yan et al. 2021), Lewis acids such as metal salt (Nguyen et al. 2016), 

heterogeneous metal-substituted BEA zeolites (Gounder and Davis 2013; Bermejo-Deval 

et al. 2014), alkaline solution (Speck 1958), and various other media (Nagorski and 

Richard 2001; Saravanamurugan and Riisager 2014; Murzin et al. 2017). 1,2-hrdride 

transfer and 1,5-hydride transfer of glucose were observed in the Lewis Acid solution 

(Gounder and Davis 2013; Nguyen et al. 2016), to form fructose and sorbose, respectively. 

In light of their low concentrations and overlap with the corresponding values for 

of other substances in liquid chromatography, glucose and its isomers were detected by 

MS signals with m/z=203. The results are shown in Fig. 3 and Table S-2. There were three 

main isomers: glucose (Retention Time (Rt)=18.94), mannose (Rt=21.15), and fructose 

(Rt=22.48). No sorbose or galactose were detected. Mannose could be an inverse 

isomerization product of fructose. No mannose was detected with the catalyst CeO2/CNT. 

Two new peaks (Rt=25.10 and 26.45) were observed with the catalyst CeO2/CNT and 

Nb2O5/CNT, for which the Rt corresponded to tagatose and an unknown substance. 

Hexoses were increased in the former stage of the reaction and decreased later. 

Little hexose was detected at the end of reaction. The concentration of glucose varied 

greatly in reactions using different catalysts. The highest was in ZrO2/CNT (reaction 

time=30 min; yield<0.005), followed by Nb2O5/CNT and ZnO/CNT, and the lowest was 

in CeO2/CNT. The strength and amount of surface acid and base site could accelerate the 

consumption of glucose. The CeO2/CNT was found to possess a large amount of strong 

acid and base sites, leading to the lowest hexose concentration. Glucose was isomerized 

partially to fructose in ZnO/CNT and CeO2/CNT. 
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Fig. 3. LC-MS (m/z=203) of samples in different reaction time. (a)CeO2, Rt=19.21, 21.76,22.65, 

25.10 and 26.45 min. (b) ZnO, Rt= 18.94, 21.15 and 22.48 min. (C)Nb2O5, Rt=18.87, 21.15， 22.41, 

24.70 and 26.07 min. (d) ZrO2, Rt=18.91, 21.08 and 22.49 min 

 

Yield variation of main products in reaction time 

The yield variations of sorbitol, EG, 1,2-PG, THFDM, and 1,4-sorbitan in reaction 

time with different catalysts are shown in Fig. 4. 

The yields of sorbitol increased at the former stage of the reaction, but decreased 

as time went on for all four catalysts. The optimal reaction time was 90 min for sorbitol. 

The highest sorbitol yield was 31.1%, obtained for ZrO2/CNT at 90 min. Sorbitol yields 

were in the range of 16.8 to 53.4%, when carbon blacks, activated carbon, Al2O3, ZrO2, or 

TiO2 supported Pt catalyst were employed (Kobayashi et al. 2011). In systems where acid-

functionalized carbonaceous materials or HZSM-5 served as support, and where Pt, Ru, or 

Ni served as the active component, the sorbitol yields were in the range of 39.4 to 70.0% 

(Manaenkov et al. 2019). A sorbitol yield of 91.0% was obtained with CuO/CeO2-ZrO2 

(Manaenkov et al. 2019). Sorbitol could be decreased by dehydrogenation (Deutsch et al. 

2012; Jia and Liu 2016), dehydration (Sun et al. 2013), hydrogenolysis (Sun et al. 2015), 

etc.  

The yields of EG increased at the former stage of the reaction, and they kept 

constant for ZrO2/CNT, ZnO/CNT, and Nb2O5/CNT after 90 min, but decreased for 

CeO2/CNT after 150 min. The highest EG yield was 36.3%, obtained for CeO2/CNT at 150 

min. It is widely accepted that W-containing catalysts have the tendency of producing high 

(a) 
(b) 

(c) (d) 
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EG yields. The EG yields by using of many W-containing catalysts were reviewed; they 

were in the range of 8.4 to 77.5% (Manaenkov et al. 2019). 
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Fig. 4. The yields of some products in different reaction time. Reaction conditions: P = 60 bars, 
H2 at room temperature (RT), T= RT to 245 °C with a heating rate of 2 °C /min, kept at 245 °C for 
270 min. Microcrystalline cellulose (1.00 g), catalyst ((Ni/CNT+MOx/CNT with Ni and MOx to be 
0.81 mmol) and distilled water (100 mL) in a 300 mL autoclave reactor. 

 

The yields of 1,2-PG increased at the former stage of the reaction, and kept constant 

for ZrO2/CNT and Nb2O5/CNT after 90 min, kept increased for ZnO/CNT after 90 min, 

and decreased for CeO2/CNT after 150 min. The highest 1,2-PG yield was 20.7%, obtained 

for ZnO/CNT at 270 min. High 1,2-PG yields were obtained in CuCr catalysts (Xiao et al. 

2013) and Sn-containing catalysts (Manaenkov et al. 2019); the yields were in the range of 

32.2 to 39.0%. 

(a) 

(b) (c) 

  

  

(d) (e) 
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The yields of THFDM kept increasing all the time for ZnO/CNT, Nb2O5/CNT, and 

ZrO2/CNT. The rate of increase for ZnO/CNT was higher than those for Nb2O5/CNT and 

ZrO2/CNT after 150 min. No THFDM was detected for CeO2/CNT. The highest yield was 

13.6%, obtained for ZrO2/CNT at 270 min. Niobic acid and a ruthenium catalyst were used 

in glucose conversion, the selectivity to THFDM was 60% and conversion was 49% (Duan 

et al. 2017). 1,4-sorbitan was only observed for Nb2O5/CNT and ZrO2/CNT, the yields 

were 10.9% and 9.0%, respectively. Layered niobium molybdate (HNbMoO6) (Morita et 

al. 2014) and sulfuric acid (Yabushita et al. 2015) were used in the dehydration of aqueous-

phase sorbitol, where the yields of 1,4-sorbitan were 33% and 58% respectively.  The yields 

of 1,4-sorbitan kept increasing continually, except for a decline for Nb2O5/CNT after 210 

min. The dehydration of sorbitol to 1,4-sorbitan was an acid-catalyzed reaction (Sun et al. 

2013). 

 

Discussion 
The yields of EG, 1,2-PG, sorbitol, and sorbitans were mainly influenced by several 

types of reaction, as shown in Fig. 5. RAC of glucose produces EG. RAC of fructose 

produces 1,2-PG. Hydrogenation of glucose produces sorbitol. Dehydration of sorbitol 

produces 1,4-sorbitan, isosorbitan, and THFDM. Dehydration of fructose produces 

hydroxymethylfurfural (HMF) (Aida et al. 2007). The HMF is then hydrogenated to 

THFDM. 

ZnO/CNT resulted in the fastest cellulose hydrolysis rate. The isomerization of 

glucose to fructose (consumption of product) helped the hydrolysis reaction going forward. 

For CeO2/CNT, though the glucose consumption was fastest, glucose experienced C-C 

bond cracking, resulting in many small molecules, which occupied active H+ and active 

sites. These effects tempered the cellulose hydrolysis. No glucose or fructose was detected 

after 90 min for all four catalysts, which implied that cellulose hydrolysis had completed 

at 90 min. 

The yields of EG and 1,2-PG were increased for CeO2/CNT from 90 min to 150 

min. This effect could have originated from RAC of pentose, or terminal C-C scission of 

glyceraldehyde or erythrose. Glucose could be oxidized to gluconic acid for the ability of 

CeOx to shuttle between Ce(III) and Ce(IV) state (Montini et al. 2016), then 

decarboxylation took place (Bohre et al. 2019), generating terminal C-C scission. Parts of 

EG and 1,2-PG were hydrodeoxygenated to ethanol and propanol after 150 min. 

For ZnO/CNT, sorbitol decreased, EG kept constant, and 1,2-PG increased after 90 

min, which demonstrated that sorbitol was dehydrogenated at the 2/5-position, not the 1,6-

position, which in accordance with the conclusion that a sorbitol dehydrogenation step 

proceeded by preferential activation of its C (5)–H bond (Jia and Liu 2016). 

For Nb2O5/CNT and ZrO2/CNT, EG and 1,2-PG were constant after 90 min, which 

implied that dehydrogenation of sorbitol was hard to achieve. The increasing rate of 

THFDM yield was lower after 90 min, which disclosed that the reaction rate of fructose to 

THFDM was faster than sorbitol to THFDM. Parts of 1,4-sorbitan had been converted to 

isosorbitan for Nb2O5/CNT after 210 min. 
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Fig. 5. Main reaction routes for cellulose hydrothermal hydrogenolysis. (Cel: Cellulose; Glu: 
Glucose; Fru: Fructose; THFDM: tetrahydrofuran dimethanol; Sor: Sorbitol; EG: Ethylene glycol; 
1,2-PG: Propylene glycol. R1: hydrolysis; R2: isomerization; R3: retro-aldol condensation; R4: 
hydrogenation; R5: dehydrogenation; R6: dehydration). 

 

Less EG and 1,2-PG were produced for Nb2O5/CNT and ZrO2/CNT. 23.9% EG and 

7.4% 1,2-PG were formed by Ni/CNT alone in the authors’ previous study (Van der Wijst 

et al. 2015). Nb2O5/CNT and ZrO2/CNT were found to be inert to C-C bond cracking. Liu’s 

studies showed that the crystalized WO3 was essential to C-C scission (Liu et al. 2012, 

2022). Nb2O5/CNT and ZrO2/CNT were amorphous, which may cause inertness. However, 

in Gromov’s study, the main product of cellulose hydrogenolysis on hexagonal Nb2O5 and 

on monoclinic or tetragonal ZrO2 was also sorbitol (Gromov et al. 2021). It follows that 

the inertness of Nb2O5/CNT and ZrO2/CNT could be attributed to the surface acid/base 

property. 

 

 
CONCLUSIONS 
 

1. The supported catalyst CeO2/carbon nanotube (CNT) was found to be rich in strong 

Lewis acid and base sites, and the crystallized CeO2 was redox active. In addition, it 

was active in C-C bond cracking (retro-aldol condensation (RAC), terminal C-C 

scission), isomerization, dehydrogenation, and hydrodeoxygenation reactions. The 

reaction yielded 36.3% ethylene glycol (EG) and 17.2% 1,2-propylene glycol (1,2-PG). 

2. ZnO/CNT with Brønsted base accelerates isomerization, RAC, and dehydrogenation, 

yielding 20.7% 1,2-PG, 17.8% EG, and 12.7% THFDM. 

3. Nb2O5/CNT and ZrO2/CNT were found to be inert to C-C bond cracking, H+ in hot 

compressed water and the Bronsted acid in Nb2O5/CNT accelerated dehydration, 

yielding more sorbitol and sorbitan. 

4. The reaction network for cellulose hydrogenolysis is complex. The type of metal oxides 

influences glucose evolution and final product distribution greatly. Reaction time and 

catalysts should be cautiously selected to get a certain product. 
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APPENDIX 
 
 

Table S-1. Metal Content of Catalysts 

Catalysts 
Metal Contenta 

(mmol/g) 
Metal Contentb 

(mmol/g) 
Ratio (b/a） 

Ni/CNT 3.25 3.05 0.94  

CeO2/CNT 2.48 2.29 0.92  

ZrO2/CNT 2.82 2.37 0.84  

Nb2O5/CNT 2.75 2.46 0.89  

ZnO/CNT 3.20 2.92 0.91  
a means metal content calculated by the amount of adding. b means metal content detected by 

ICP-OES. 

 

 

Table S-2. MS (m/z=203) Peak Area of Samples 

 Catalysts 
Glucose Peak Area 

180C 240C 15M 30M 45M 

CeO2/CNT - 404294 265376 133285 - 

Nb2O5/CNT 126647 2089765 1523861 1301997 1356869 

ZrO2/CNT 50191 1014821 3446931 3699475 2526217 

ZnO/CNT - 498434 1263747 881790 266261 

 

 Catalysts 
Fructose Peak Area 

180C 240C 15M 30M 45M 

CeO2/CNT - 695247 395240 392575 272952 

Nb2O5/CNT - 226605 495121 463051 488526 

ZrO2/CNT - 563771 1379152 1310923 883998 

ZnO/CNT - 476620 1197794 837857 345643 

 

 Catalysts 
Mannose Peak Area 

180C 240C 15M 30M 45M 

CeO2/CNT - - - - - 

Nb2O5/CNT - 293616 212858 365254 379649 

ZrO2/CNT - 376379 977200 915544 604114 

ZnO/CNT - 522400 816764 608119 189402 
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Fig. S-1. Binding energy of Ce3d of Ce (IV)O2+Ce2(Ⅲ)O3/CNT 

 

Binding Energy (eV) 
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Fig. S-2. Binding energy of Zn2p of ZnO/CNT 

Binding Energy (eV) 
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Fig. S-3. Binding energy of Nb3d of Nb2O5/CNT 

 

Binding Energy (eV) 
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Fig. S-4. Binding energy of Zr3d of ZrO2/CNT 

 
  

Binding Energy (eV) 
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Fig. S-6-2. NH3-TPD of ZnO/CNT 
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Fig. S-6-3. NH3-TPD of ZrO2/CNT 
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Fig. S-6-4. NH3-TPD of Nb2O5/CNT 


