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This paper constructs the operation model of agricultural products supply 
chain under an IoT (Internet of Things) environment, based on which the 
HHM (Hodrick-Prescott Filter) model is used to identify the risk. The ISM 
(Internal Supply Management) model was used to analyze risk factors. A 
risk index system was constructed, which was divided into three primary 
indexes and 18 secondary indexes. The backpropagation (BP) neural 
network approach was used to establish the risk assessment model. The 
sample data from 2017 to 2020 was employed as the test sample to test 
the network assessment model. There was a very small error in the risk 
level assessment and training results. The results showed that the risk 
level assessment model was highly operable and can have practical value 
for effective assessment of the risk level. 
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INTRODUCTION 

 

Facing the introduction of IoT technology, research on risk management should not 

be limited to the traditional model. Ideally, it should combine new development 

characteristics to improve the risk management under the IoT environment (Fontes and 

Freires 2018). From the theoretical level, on the one hand, academic research in this field 

should keep pace with the times and introduce new technologies, while the current food 

supply chain still lacks a scientific and reasonable index system and risk assessment 

research in the application of IoT technology (Verma et al. 2022). On the other hand, 

compared with other food supply chains, the influence factors of this field are more 

complex, the quantification of risk factors is more complicated, there is no more scientific 

method, and the index selection is more difficult. Therefore, this paper helps to enrich the 

theoretical results of this field risk research through the analysis and evaluation of risk 

(Mohammadi et al. 2021). 

From the practical level, for enterprises, most agricultural products enterprises in 

the past are still relatively weak in the awareness of supply chain risks. They focus more 

on the creation of corporate profits and easily ignore the identification and control of this 

field of risks, thus causing economic losses. Thus, strengthening risk management can 

bring long-term benefits to enterprises (Liu 2022). In addition, the quality and safety of 

agricultural products can also bring adverse social effects, and strengthening risk 

management can also provide scientific and practical suggestions and measures for 

government departments (Reinhardt et al. 2001). 
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RELATED WORK 
 

Starting from the 1990s, some scholars have asserted that the supply chain of 

agricultural products must satisfy six elements: large-scale production, continuous supply, 

member alliance, quality control, flexible production process, and technology information 

application (Uzogara 2000). In 2009, relevant experts explored the problems in food 

procurement and discussed how to manage and prevent risks; in 2020, many studies are 

showing that food is a necessity for human life, so the risk control of food is significant in 

the food supply chain (Des Roches et al. 2019). 

Regarding the research on supply chain risk identification, scholars believe that 

cooperation, trust, and collaboration among companies can facilitate the establishment of 

an agricultural products supply chain. Some scholars believe that product quality risks exist 

in all aspects of agricultural products, from production to consumption, and these are rooted 

in the high-risk nature of agricultural products (Merriman et al. 2019). Some scholars have 

suggested using weight hierarchy analysis to assess, classify, and manage supply risks 

(César et al. 2018). Some scholars have combined AHP and FAHP to evaluate and classify 

the supply chain risks. Frequency domain analysis has been used to assess and control the 

supply chain risk and use the net present value of activity method to measure the cost of 

risk generation (Pascual et al. 2017). With the continuous development of theories, some 

scholars began to use the explanatory structure model to study the dependence of different 

levels of risks on each other in the agricultural supply chain. The power-change theory has 

been used to quantify the supply chain risks caused by internal and external environmental 

changes (Fortems‐Cheiney et al. 2016). A method of quantifying supply chain risks based 

on a conceptual framework has been proposed, using graph theory to quantify information 

risks (Mulwa et al. 2016). Others have analyzed the factors affecting food safety from a 

supply chain perspective and concluded that the factors affecting food safety are: 

processing, logistics, source supply, and catering (Zhang et al. 2021). 

IoT technology allows various links in the agricultural product supply chain (such 

as farms, warehouses, transportation, etc.) to obtain data in real time through sensors and 

devices, such as temperature, humidity, climate conditions, location, and other information. 

These data can be used to build risk assessment models and monitor risk points in the 

supply chain in real time, helping to promptly warn and manage risks. 

The agricultural product supply chain in the Internet of Things environment 

involves multiple participants and links, generating a large amount of data. Using IoT 

technology, data from different sources can be integrated and combined with other external 

data (such as weather data, market data, etc.) to more comprehensively assess supply chain 

risks. Based on data collection and processing in the Internet of Things environment, the 

agricultural product supply chain risk assessment model can analyze and predict potential 

risk events in real time and provide decision support. This helps to respond and adjust 

immediately to risks in the supply chain, reducing the impact of risks and improving the 

resilience and flexibility of the supply chain. The agricultural product supply chain risk 

assessment model in the Internet of Things environment can achieve remote monitoring 

and management, and through remote equipment management and intelligent control, 

potential risk issues can be discovered and resolved in a timely manner. This remote 

monitoring and management capability helps increase efficiency, reduce costs, and reduce 

the risk of human error and operational errors. 

Internet of Things technology can collect and monitor various data related to the 

agricultural product supply chain in real time and comprehensively, including 
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meteorological data, soil data, crop growth data, as well as temperature and humidity data 

in storage and transportation, etc. Compared with traditional methods, the application of 

IoT technology makes data collection more accurate and efficient. The agricultural product 

supply chain in the Internet of Things environment involves multiple links and multiple 

participants. Each link generates a large amount of data, which comes from different 

sources. Through IoT technology, these data can be integrated to form a complete supply 

chain data system, and comprehensive analysis can be conducted based on this data system 

to better assess risks. Based on supply chain data in the Internet of Things environment, a 

real-time risk early warning system can be established. By monitoring and analyzing the 

data, potential supply chain risks, such as natural disasters, epidemics, quality problems, 

etc., can be discovered in a timely manner, so that corresponding measures can be taken, 

thereby reducing losses and impacts. The agricultural product supply chain risk assessment 

model in the Internet of Things environment can support the automation of decision-

making. Through algorithms and machine learning technology, large amounts of data can 

be quickly processed and analyzed to generate decision-making recommendations. Such a 

model can help supply chain managers make better decisions and reduce the interference 

of human factors. 

 

 

METHOD 
 
Agricultural Products Supply Chain Operation Model 

Based on the traditional operation model and the practical application of IoT, a 

model under the IoT environment consisting of growers, distributors, retail enterprises, and 

consumers is constructed (Sun and Zhu 2022). With the use and support of the IoT system, 

the operation of various links such as production, distribution, sales testing, and agricultural 

products traceability is ensured, and information sharing in each link is realized. The 

operation mode is shown in Fig 1. 

 

IoT 

system

Smart production recall
Transportation 

anddistribution recall
Detection processing

Growers Distributors Retail companies Consumers

Agricultural supply chain information system

Govermment regulators

Logistics

Intellectualization

Information flow

 
Fig. 1. Operation model in IOT environment 

 

This paper divides its application of the agricultural supply chain into three aspects: 

the sensing layer, information layer, and perception layer. The agricultural supply chain 

IoT application system architecture is as shown in Fig. 2. 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Lu (2024). “Agricultural supply chain risk management,” BioResources 19(1), 552-567.  555 

 
Fig. 2. Agricultural supply chain IoT application system architecture 

 
HHM-ISM model in IoT environment 
Agricultural products supply chain risk identification based on HHM 

In the first step, different possible risk sources are selected, and risk scenarios are 

classified from several different perspectives based on the characteristics (Zihao et al. 

2022). 

The motivation for using artificial neural network modeling is that it can perform 

model construction and prediction by learning data characteristics, and it performs well on 

nonlinear and complex problems. In agricultural product supply chain risk assessment, due 

to the combination and interaction of various factors, risk assessment problems are 

nonlinear and highly complex, and it is difficult to solve these problems well with 

traditional modeling methods. The artificial neural network model is different from the 

traditional linear model in that it can simulate nonlinear relationships, making the model 

closer to the actual situation. During the training process, the artificial neural network 

model can adaptively adjust weights and thresholds to achieve better prediction results. 

The artificial neural network model can handle multi-dimensional and high-dimensional 

data, which is unmatched by other methods. Artificial neural network models can also 

maintain good predictive capabilities when there are missing or abnormal data in the data 

set. The artificial neural network model adopts an iterative optimization method, which can 

continuously optimize model performance during the continuous learning process. 

In the second step, each perspective delineated in the first step is further subdivided, 

and it is continuously iterated and repeatedly judged whether the current view can express 

the complete risk sources and prevent any error or omission. The HHM framework is 

finally determined, as shown in Fig. 3. 

During this step, the identified perspectives are carefully analyzed to identify the 

key components or factors within each perspective that contribute to the overall risks in the 

agricultural supply chain. These components can include various aspects such as 

production, logistics, quality control, market demand, financial factors, and regulatory 

compliance. 
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Fig. 3. HHM Framework 

 

For each identified component, further subdivisions and categorizations are made 

to capture the specific elements or factors that may pose risks or influence the overall risk 

level. This can involve breaking down the components into sub-components or identifying 

specific risk factors associated with each component. 

Throughout this process, it is crucial to continuously iterate and evaluate whether 

the current subdivisions and categorizations effectively express the complete range of risk 

sources. This iterative approach helps to ensure comprehensiveness and accuracy in 

identifying the risk factors. By continuously reviewing and judging the subdivisions, the 

goal is to prevent any potential errors or omissions in capturing the key risk sources. This 

evaluation process helps refine the risk assessment model and ensures that it provides a 

thorough understanding of the risks present in the agricultural supply chain in the IoT 

environment. In the third step, any two perspectives are selected and cross-tabulated for 

each of their subfactors, and the cross-tabulation between perspective C and perspective D 

is shown in Fig. 4. 
 

 
 

Fig. 4. Perspective C and D Risk Factor Identification HHM Sub-Framework 
 

In the fourth step, all subfactors under perspective C and all subfactors under 

perspective D are analyzed two by two to obtain the influence of subfactors under 

perspective C by subfactors under perspective D, and the result is shown in Table 1. 
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Table 1. Perspective C and Perspective D Risk Identification Matrix 

Risk Factors 

Perspective D 

Sub-factor 
Da 

Sub-
factor Db 

Sub-
factorDc 

Sub-
factorDd 

Perspective 
C 

Sub-factor C1 CaDa CaDb CaDc CaDd 

Sub-factor C2 CbDa CbDb CbDc CbDd 

Sub-factor C3 CcDa CcDb CcDc CcDd 

Sub-factor C4 CdDa CdDb CdDc CdDd 

 

In the fifth step, the above steps are repeated to obtain all risk factors. The accepted 

risk factors are filtered to exclude the factors with little relevance or duplication. The design 

process is shown in Fig. 5. The content of the HHM framework is shown in Fig. 6. 
 

 
Fig. 5. The design process of the HHM framework 

 

 
 

Fig. 6. HHM framework 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Lu (2024). “Agricultural supply chain risk management,” BioResources 19(1), 552-567.  558 

In the following, the HHM model will be used to analyze the potential risk factors 

from two perspectives: management level and risk object, and the analysis process is shown 

in Table 2. 

 

Table 2. Management Level - Risk Objects Risk Factor Identification Matrix 
 

Risk Factors 
Risk Objects 

Grower Distributor Retailer Consumer 

Management 
Level 

Strategy Strategy Strategy 
Strategy 

Competition 
__ 

Program 
Raw material 
input decision 

Partner 
selection 

Partner 
selection 
Demand 

fluctuation 

__ 

Execution 

production 
safety 

materials 
Safety 

Processing 
cost control 

Transportation 

Transportation 
Product 

Damage 

Cost control 
risk 

 

The same method is used to identify risk factors for all subfactors in the HHM 

framework, and 235 risk factors can be theoretically derived. The risk index system used 

in this paper is shown in Fig. 7. 

 
Fig. 7. Risk assessment index system in IoT environment 
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Agricultural products supply chain risk factor analysis based on ISM 

In the first step, the correlation matrix of adjacent factors is constructed. The 

influencing factors T1, T2, ⋯ To of the system are determined, and the association matrix S 

is built. The judgment conditions of the relationship between factors are as follows: 

{
1 There is an influence between factors
0 There is no influence between factors

 

The second step is to construct the power operation of mClose (𝑆 + 𝐼) for some 

integer o until Equation 1 holds (Zihao et al. 2022).  

𝐶𝑎𝑝𝑁 = (𝑆 + 𝐼)𝑜+1 = (𝑆 + 𝐼)𝑜 ≠ (𝑆 + 𝐼)2 ≠ (𝑆 + 𝐼), o = 1,2,3,⋯ (1) 

From this, the reachable set and the antecedent set can be determined and expressed 

by Eqs. 2 and 3: 

𝑆(𝑇𝑖) = {𝑇𝑖 ∈ 𝑂 ∣ 𝑛𝑖𝑗 = 1} (2) 

𝐵(𝑇𝑖) = {𝑇𝑗 ∈ 𝑂 ∣ 𝑛𝑖𝑗 = 1} (3) 

The third step is to construct the hierarchical identification model (Fan et al. 2022). 

𝑆(𝑇𝑖) ∩ 𝐵(𝑇𝑖) = 𝑆(𝑇𝑖) (4) 

In the fourth step, a multi-level structure recurrence diagram is produced. 

Through the above HHM-based risk identification of agricultural products supply 

chain in IoT environment, 234 risk factors can be theoretically derived, 38 risk factors are 

extracted after filtering the data, and these are further constructed by 18 risk factors 

according to the principle of index system selection. According to the interrelationship of 

the 18 risk factors, the key factor 𝑖𝑠 assumed in the correlation matrix, and finally, the 

correlation matrix S. 

 

𝑆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1
0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0
0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1
0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1
1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1
1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1
0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1
1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0
0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1
0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1
0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1]
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The association matrix R is calculated according to Equation 1, and the reachable 

matrix N is obtained as: 

 

𝑁 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0
0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1
0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1
1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1
0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Hierarchical processing of N with Eq. 4 is used to obtain the risk factor interaction 

relationship and get the hierarchical relationship of risk factors of agricultural products 

supply chain under IoT environment. The results are shown in Table 3. The final multi-

level recursive structural model is shown in Fig 8. 

 

 
 

Fig. 8. Multi-level recursive structural model of agricultural supply chain factors in IoT  
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Table 3. Hierarchical Relationship of Agricultural Products Supply Chain Risk 
Factors 
 

Level Key Factors 

L1 3 9 14 15 19 

L2 4 5 6 7 8 

L3 10 11 12 18 

L4 2 16 17 

L5 12 

 

 

RESULTS 
 
Agricultural Products Supply Chain Risk Assessment Based on BP Neural 
Network 

Regarding the input layer, this paper uses the fuzzy integration principle and 

programming operations to obtain the specific risk operation data in the final index 

(Suardin et al. 2007). These initial indicators are preprocessed using principal component 

analysis, and then the error is reduced using the Kaiser normalized maximum variance 

method. As can be seen from Table 4, the 18 indicators converged after 7 iterations of 

rotation, and three principal factors were extracted using principal component analysis, 

with a cumulative variance contribution of 85.82%. 

 
Table 4. Rotated Factor Component Matrix 
 

 1 2 3 

B1 0.922 0.221 -0.081 

B2 0.688 0.584 0.128 

B3 0.927 0.115 0.003 

B4 0.887 0.223 0.122 

B5 0.323 0.182 0.003 

B6 0.743 0.455 0.179 

B7 0.771 0.564 0.224 

B8 0.632 0.345 0.222 

B9 0.123 0.564 0.322 

B10 0.177 0.555 0.132 

B11 0.763 0.621 0.344 

B12 0.332 0.465 0.771 

B13 0.234 0.332 0.632 

B14 0.555 0.323 0.123 

B15 0.234 0.151 0.332 

B16 0.345 -0.112 0.234 

B17 -0.889 -0.232 0.555 

B18 0.231 0.122 0.234 

 

Positive and negative values respectively indicate the degree of impact of different 

factors in the agricultural supply chain on the end-to-end risk of the supply chain. 

Specifically, a positive value indicates that this factor is likely to have a positive impact on 

the risk, while a negative value indicates that it is likely to have a negative impact on the 

risk. In Table 4, the influence coefficient of factors is 0.922, which is a positive value. This 

means that improved levels of traceability and quality control may help reduce risks in 
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agricultural supply chains. Similarly, the influence coefficient of factors is -0.081, which 

is negative, indicating that environmental issues may increase supply chain risks. 

Regarding the output layer, the number of risk levels is represented by node 

sections, which are generally divided based on the evaluation results corresponding to the 

expected output values in the training sample data (Yadav et al. 2017). The research 

process used SPSS18.0 software to pre-process the training samples. The weight values of 

the three common factors were set as the proportion of their variance contribution to the 

total variance contribution, and the combined score of each training factor was obtained 

after the weighting calculation. Among them, the scores of each common element are as 

follows: 

Fp1=(0.601×B1+0.867×B3+0.758×B4+0.823×B5+0.753×B6+0.812×B7+0.625×B9+

... +0.863×B18)/(0.601+0.867+... +0.863) 

Fp2=(0.885×B2+0.632×B6+0.72×B8+0.626×B9+... +0.789×B25)/(0.885+0.632+... 

+0.789) 

Fp3=(0.789×B22)/0.789 

The weight of the total variance contribution of the main factor is 

F=(45.008×Fp1+36.996×Fp2+9.721×Fp3)/86.232 

The final composite factor scores were obtained as shown in Table 5 

 

Table 5. Combined Factor Scores of Training Factors 
 

 1 2 3 
Composite 

Factor Score 

2011 -1.322 -0.456 0.543 -1.002 

2012 -0.767 -0.872 0.278 -0.802 

2013 0.101 0.112 0.003 -0.332 

2014 -0.232 0.343 0.122 -0.243 

2015 -0.812 0.222 0.003 -0.072 

2016 0.882 0.161 0.155 0.002 

2017 0.233 0.987 0.567 0.234 

2018 0.684 0.199 1.010 0.775 

2019 1.129 0.212 1.222 1.034 

2020 0.234 0.978 1.230 0.455 

 

The distribution of risk assessment levels are shown in Table 6 

 

Table 6. Risk Level 
 

Risk Level Risk Degree 
Combined 

Factor Value 
Range 

Assessment 
Output 

Display Signal 

1 Significant Risk (-∞,-1) [1000] Red 

2 Major Risk (-1,0) [0100] Orange 

3 General Risk (0,1) [0010] Yellow 

4 Low risk (1∞) [0001] Blue 

 

Regarding determining the implied layer, the software MATLAB 2020a was used 

in this work to take the values and cobble together the trials in turn (Li and Sun 2022). This 
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paper established a 12×13×3l model. The BP structure hidden layer node number training 

effect is shown in Fig. 9. 

 
 

Fig. 9. BP structure hidden layer node number training effect 

 

 
 

Fig. 10. Network training error variation curve 
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Model Training and Testing 
This paper used the data from 2012 to 2016 as the training samples. The actual data 

are determined as the number of nodes in the input layer of the model. Data import function 

was used to establish the evaluation network, and the "Newff()" network running program 

was used to conduct BP neural network training. As shown in Fig. 10, when the model is 

trained to 106, the performance of the whole risk level assessment model reaches the best 

state, and the training effect was optimal. 

As shown in Fig. 11, the actual output value and the expected target value were 

positively distributed, the sample fit was good, and the accuracy of the training sample was 

98.382%. The training sample set fit well and can reach the expected target. 

 

 
Fig. 11. Predicted data vs. actual data results 

 

In this paper, the sample data from 2017 to 2020 was selected as the test sample, 

thus testing the network evaluation model, and the results are detailed in Table 7.  

 

Table 7. Network Test Output Results 
 

Year 
Expected 

Output 
Actual 
Output 

Risk level 
Display 
signal 

Output 
identification 

2017 0.434 0.323347898 2 Yellow [0010] 

2018 0.632 0.702127032 2 Yellow [0010] 

2019 0.765 0.734320098 2 Yellow [0010] 

2020 1.021 1.023883981 1 Blue [0001] 
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It can be concluded that the model training error was very small, thus meeting the 

requirement of small gap between the desired output value and the actual output value and 

indicating that a better model is established.  

 

 

CONCLUSION 
 

This work involved construction of an operation model of agricultural products 

supply chain under IoT environment. Based on this approach, the HHM model was used 

to identify the risk under an IoT environment. The ISM model was used to analyze risk 

factors, and the risk index system was constructed, which was divided into three primary 

indexes and 18 secondary indexes. The back-propagation (BP) neural network was used to 

establish a risk assessment model. Sample data from 2017 to 2020 was used as the test 

sample to test the network assessment model. There was a very small error in the risk level 

assessment and training results, and a good model was established. The risk level 

assessment model was found to be highly operable and have practical value that can 

effectively assess the risk level. A shortcoming of this work is that the prediction results 

are random because the weight thresholds are generated randomly. To deal with this, there 

is a need to continue to optimize the structural parameters in the future, such as selecting 

the minimum number of implied layer neurons corresponding to the mean squared 

difference value MSE by using a circular statement algorithm. 
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