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The available surface defect detection methods for disposable wooden 
spoons still involve screening with the naked eye. This detection method 
is not only inefficient but also accompanied by problems such as false 
detection and missed detection. Therefore, this paper proposes a 
detection method based on an improved YOLOv5 network model 
(YOLOv5-TSPP). This method uses the K-Means ++ algorithm to cluster 
the target samples in the data set to obtain anchor frames that are more 
in line with different target scales. The Coordinate Attention module is 
added to the backbone network of the YOLOv5 network model to improve 
the feature extraction ability of the model. A new SPP module is added to 
the backbone network to increase the important features in the receptive 
field extraction network to improve the detection accuracy of small targets. 
The experimental results show: The YOLOv5-TSPP algorithm has better 
detection performance and the mAP of defect detection reaches 80.3%, 
which is 9.2% higher than that of the YOLOv5 algorithm. Among them, the 
detection accuracy of black knot defect reached 98.6%, the detection 
accuracy of back crack defect reached 92.1%, and the detection accuracy 
of mineral line defect reached 92.3%. 
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INTRODUCTION 
 

The disposable wooden spoon is mainly made of birch as raw material, through 

cutting, soaking, drying, hot pressing, polishing, sorting, and other processes. The surface 

defects of wooden spoons are mainly divided into two categories; one is the natural defects 

of wood raw materials and the other is the defects formed during processing. The most 

common defects are black knots, mineral lines, pollution, and back cracks. These defects 

affect the appearance and quality of wooden spoons and reduce the export number of 

wooden spoons. The existing detection methods mainly rely on manual detection. 

According to the texture, structural characteristics, color of the raw materials of wooden 

spoons, and surface defects, the wooden spoons are classified and graded by human eyes 

(Gu et al. 2010). This method requires a lot of manual participation and faces problems 

such as low-quality inspection rates and excessive labor input. With the continuous 

development of computer vision technology, intelligent methods have become increasingly 

used for defect detection. YongHua and Jin-Cong (2015) proposed a detection method of 

mixed surface texture features, which ensured the accuracy and robustness of the model 

and could detect dead knot and live knot defects. Song et al. (2015) proposed a method 
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based on image block percentile color histogram and feature vector texture classification, 

which can detect knots and crack defects. Zhang et al. (2015) combined principal 

component analysis with compressed sensing technology and achieved high recognition 

accuracy in detecting wood defects. Mu et al. (2015) combined fuzzy mathematics with a 

back propagation neural network (BP) to build a fuzzy BP neural network (FBP), which 

can realize the automatic identification of wood defects. Abdullah et al. (2020) used gray 

dependence matrix (GLDM) for feature extraction and feature analysis to study appropriate 

displacement and quantitative parameters that can classify wood defects. Yang and Yu 

(2017) used wavelet-based ultrasonic testing to extract features of wood hole defects. 

Aleksi et al. (2019) detected the defects on wood by calculating the vector difference 

between the texture without defects and the texture with defects. However, the above 

detection methods are easily affected by the shape and texture of the wood itself and the 

surrounding environment (light, angle, etc.), such that it can be difficult to meet the needs 

of defect detection in complex image backgrounds. 

With the development of convolutional neural networks, applying convolutional 

networks to target detection can allow the system to learn higher-level features of images 

and improve detection efficiency. At present, defect detection based on deep learning is 

mainly divided into two categories: one is based on region proposal, such as the Faster R-

CNN model (Ren et al. 2015); the other is object-based regression methods, such as SSD 

(Liu et al. 2016) and YOLO model (Redmon et al. 2016). Shi et al. (2020) constructed a 

convolutional neural network and then used multi-channel Mask R-CNN to classify and 

locate defects, which can identify dead knots, live knots, and cracks in wood. Wang et al. 

(2018) used the fuzzy pattern recognition method to detect the surface defects of 

particleboard in motion and calculated the number of defects, defect area, and damage 

degree. Yang et al. (2019) used a 3D laser sensor system to classify and identify the surface 

defects of wood-based panels and obtained a final classification accuracy of 94.7% after 

applying SVM. Urbonas et al. (2019) used a faster region-based convolutional neural 

network (Faster R-CNN) to identify defects on the surface of wood veneers. He et al. 

(2019) proposed a hybrid fully convolutional neural network (Mix-FCN) to detect the 

location of wood defects and automatically classify the types of defects from wood surface 

images. He et al. (2020) used deep convolutional neural network (DCNN) to identify and 

detect defects in wood images collected by laser scanners. Chen et al. (2022) used deep 

learning algorithms to extract image features of the original image and laser alignment to 

achieve higher accuracy and used AOI to classify the final result defects of WDD-DL. Sun 

(2022) designed and developed an automatic detection method for wood surface defects 

based on deep learning algorithm and multi-criteria framework. Based on digital image 

processing technology, Ye et al. (2022) designed a complete set of real-time wood 

classification detection algorithms. Xia et al. (2022) improved the Faster R-CNN algorithm 

and proposed a surface defect detection algorithm based on the improved Faster R-CNN. 

Hacıefendioğlu et al. (2022) used the deep convolutional neural network (DCNN) model 

using the K-means clustering algorithm to further improve the detection results in terms of 

wood defect classification accuracy. The above detection model is complex, which may 

reduce the detection efficiency and accuracy in complex scenes. 

In this paper, a surface defect detection algorithm for wooden spoons based on 

YOLOv5 is proposed by using deep learning. The K-Means ++ algorithm is used to cluster 

the target samples in the data set to obtain anchor frames that are more in line with different 

target scales and improve the accuracy of multi-target positioning and entity segmentation. 

The Coordinate Attention module is added to the backbone network of the YOLOv5 
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network model to improve the feature extraction ability of the model. A new SPPnet 

module is added to the backbone network to increase the receptive field to extract important 

features to improve the detection accuracy of small targets. The improved network can 

better improve the recognition accuracy of surface defects of wooden spoons and then 

improve the effective utilization rate of wooden spoons. 

 

 

EXPERIMENTAL 
 

Materials 
The data set of wooden spoons was obtained from image acquisition and data 

enhancement. The image acquisition imports the image of the wooden spoon through the 

experimental platform. A representative surface defect image is shown in Fig. 1. The back 

crack is caused by the splitting of the back of the wooden spoon along the direction of the 

wood texture during the processing of the wooden spoon, such as the ( a ) red box mark 

position in Fig. 1. Black knots are naturally formed during the growth of trees. The wood 

defect is obvious. The color is deep, and it is patchy, such as the ( b ) red box mark in Fig. 

1; Mineral lines are formed when trees absorb and deposit minerals such as carbonates 

from the soil, and the defective parts are dark strips, such as the ( c ) red box mark in Fig. 

1. Defects caused by pollution include oil pollution or an unclean area on the production 

line during the production and processing of the wooden spoon. Defects can also be caused 

by mildew which shows as a black area on the surface of the wooden spoon. The defect 

site mainly presents a dark black oil stain state or mildew state, and the shape is not fixed, 

such as the ( d ) red box mark in Fig. 1. The training of convolutional neural networks 

requires a large number of samples. Through the learning of many samples, deep and 

specific features can be obtained to improve the accuracy of defect detection (Hou et al. 

2021). To obtain a large number of sample sets and prevent over-fitting during network 

training, the collected wooden spoon images are enhanced to improve the robustness of the 

convolutional neural network. Data enhancement includes rotation, translation, cropping, 

mirroring, and brightness and contrast adjustment of the original image, without changing 

the pixel value. It only changes the position of the pixel, so that the network model can 

learn more image invariant features and avoid overfitting (Li et al. 2022). A total of 3,178 

images were enhanced from the wooden spoon data set. The Labelimg tool was used to 

label the wooden spoon. Finally, the data set was divided according to the ratio of training 

set: verification set: test set = 8: 1: 1, 2542 images were used as the training set, 318 images 

were used as the test set, and the remaining 318 images were used as the validation set. 

 

 
(a) beilie defect (back crack)  (b) heijiezi defect (black knot) 
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        (c) kuangwuxian defect    (d) wuran defect (pollution) 

 (mineral line) 
Fig. 1. The collected wooden spoon defect samples  

 
Experimental Platform 

The image was sourced from the image acquisition experimental platform. The 

acquisition experimental platform mainly includes an industrial camera, lens, and light 

source. Considering that the longest side of the wooden spoon is 170 mm, the detection 

accuracy is 0.1 mm, the field of view is set to 170 mm * 170 mm, the target surface size is 

8.8 * 6.6, and the working distance is 31.2 cm. Thus, a focal length of f = 1.6 mm is 

obtained. The Hikvision MVL-HF1628M-6MPE lens was selected. Finally, combined with 

the above parameters, the Hikvision MV-CA050-GM camera was selected with a 

resolution of 2448 * 2048. Because the defects of the wooden spoon mainly exist on the 

surface, the LED front lighting source was selected. The defects on the surface of the 

wooden spoon are mainly back crack, black knot, mineral line, and pollution. The defect 

location was not fixed, the defect size was different, and the mineral line defect was similar 

to the wood texture shape, which needs to be distinguished by color. In order to reduce the 

error, the white LED strip light source was finally selected. 

The specific configuration of the computer used was Xeon (Skylake, IBRS) 

processor, Tesla T4 display adapter, and 16 GB memory. The software environment was 

the Ubantu18.04 operating system, Python3.8 programming language, and the Labelimg 

annotation tool was used to manually annotate the defect image. The Pytorch deep learning 

framework was built to train and test the surface defect data set of disposable wooden 

spoons. The hyperparameter settings in the training phase are shown in Table 1. 

 
Table 1. Hyperparameter Settings 

Parameter Numeric Value 

Initial learning rate 0.01 

Final decay rate 5 × 10-4 

batch 8 

Number of trainings 150 

Momentum factor 0.937 

 
YOLOv5 Network Structure 

The YOLOv5 target detection network consists of four versions, namely 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (Jocher et al. 2020). The weights of the 

four models increase in turn, and the detection accuracy increases with the weight. At the 

same time, the network training and inference time also increase. The detection object of 

this paper is small target defect detection, and the requirements for detection accuracy are 
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relatively high. Among the four models, YOLOv5x has the highest detection accuracy. 

Therefore, YOLOv5x was selected as the detection model. The model structure is shown 

in Fig. 2. The network model includes four parts: Input, Backbone, Neck, and Head. 

 

 

Fig. 2. YOLOv5 network structure 

 

Input mainly includes Mosaic data enhancement, adaptive anchor box calculation, 

and adaptive image scaling. The data enhancement part can enrich the image background 

and improve the generalization ability of the network by randomly scaling, cropping, and 

arranging the images and then splicing them together. The adaptive anchor frame can 

compare the initial anchor frame with the real frame through training for different data sets, 

reversely updating, and obtaining the anchor frame parameters that are more suitable for 

the sample set. Adaptive image scaling scales the image of the input network to a unified 

standard size and sends it to the network for training. The algorithm can reduce the filling 

amount of the scaled image to avoid information redundancy and affect the inference 

speed. The Backbone part consists of a series of convolutional neural networks for 

extracting image features, mainly including CBS, C3, and SPPnet. Focus slice operation is 

used to convert the width and height information to the channel dimension, which reduces 

the information loss caused by feature downsampling. The C3 module is a replacement for 

the CSP module, which can effectively reduce the amount of calculation and streamline 

the network structure. The Neck part is a feature fusion network, which uses PANet and 

FPN. The FPN module performs a top-down multi-scale fusion of the multi-scale feature 

maps output by the feature extraction network. The PANet module performs a bottom-up 

multi-scale fusion of the multi-scale feature maps of FPN and finally outputs a feature map 
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with stronger location information and semantic information. The Head part is the 

prediction network. By convolution operation on the three outputs of the Neck end, three 

sets of feature vectors including category prediction box, confidence, and coordinate 

position are output. 

 

YOLOv5-TSPP Network Structure 
Coordinate attention mechanism 

Due to the visual bottleneck of human beings, it is necessary to concentrate and 

ignore other secondary areas when observing a specific area. This behavioral action is 

called the attention mechanism, which has been helpful for various computer vision tasks. 

The attention mechanism mainly further extracts features from a given intermediate feature 

map by adding a simple and effective convolution attention module, aiming to improve the 

weight of beneficial features and suppress redundant features. Common attention 

mechanisms include SENet (Hu et al. 2020) (Squeeze-and-excitation), CBAM (Woo et al. 

2018) (Convolutional block attention module) attention mechanism, and CA (Zhao et al. 

2021) (Coordinate attention) attention mechanism. SENet uses average pooling to extract 

channel information. SENet captures the weight between channels through two fully 

connected layers. SENet compresses global spatial information into channel descriptors. It 

is difficult to retain location information that is critical to capture spatial structure in visual 

tasks. Selecting SENet channel attention alone will lose location information. CBAM 

focuses on the relationship between different spaces. By reducing the number of channels 

and using convolution to extract information, it pays more attention to the information in 

the spatial direction. However, the convolution method only extracts local relationships 

and cannot extract long-distance relationships.  
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Fig. 3. Coordinate attention mechanism 
 

The CA attention mechanism focuses on the width and height of the image and 

encodes the accurate position information. Firstly, the input feature map is divided into two 

directions of width and height for global average pooling, and the feature maps in the two 

directions of width and height are obtained respectively. Then, the feature maps in the two 

directions of width and height of the global receptive field, which are spliced together and 
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then they are sent to the shared convolution module. Finally, the weights on the width and 

height are obtained through the activation function. Location information is an essential 

factor for generating spatial selective attention maps in the detection of wooden spoon 

defects. Therefore, a method of introducing the C attention mechanism is proposed, as 

shown in Fig. 3, which considers the relationship and location information between 

channels. 

To enable the attention module to capture the feature information with accurate 

position, the traditional global pooling method is decomposed into two one-dimensional 

feature codes. Specifically, given the input X, each channel is encoded along the horizontal 

and vertical coordinates using average pooling with sizes (H, 1) and (1, W), respectively. 

Therefore, the output of the c-th channel with height (h) and width (w) can be expressed as 

the following formula respectively. Where h

cZ  represents the output of the c-channel at 

height h; wZc represents the output of channel c at the width w; the input X comes directly 

from the convolutional layer with a fixed kernel size. 

0 <W

1
( )= ( , )h

c c

i

Z h x h i
W 

        (1) 

0 <H

1
( )= ( , )w

c c

j

Z w x j w
H 

        (2) 

The above two transformations aggregate features along two spatial directions 

respectively, and a pair of direction-aware feature maps are obtained. The process also 

allows the attention module to capture long term dependencies along one spatial direction 

and save accurate location information along another spatial direction. This helps the 

network exclude the interference of the image background and more accurately locate the 

target of interest. After the transformation in the information embedding, the height and 

width are spliced, and the feature map of the spatial information in the vertical and 

horizontal directions is generated through the convolution operation. The following 

formula is shown. 

1( ([ , ]))h wf F z z=         (3) 

Then it is decomposed into tensor 
/h C r Hf R   and tensor 

/w C r Wf R   along the 

spatial information. Among them, r  is used to control the sampling size reduction rate. 

Then 1 1  convolution transform hF  and wF  are performed on 
hf  and 

wf  respectively. 

Two tensors with the same number of channels are obtained as inputs, and the Sigmoid 

function transformation is performed as shown in the following formula, 

( ( ))h h

hg F f=         (4) 

( ( ))w w

wg F f=         (5) 

where   is the sigmoid activation function. The number of channels of f  is reduced by 

the appropriate reduction ratio r , which reduces the calculation amount and complexity of 

the model. Then, g h
 and gw

 are extended as attention weights, respectively, and the 

following formula is used as an output. 
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( , ) ( , ) ( ) ( )h w

c c c cy i j x i j g i g j=         (6) 

The network structure before and after the introduction of the CA attention 

mechanism in the backbone network is shown in Fig. 4. 
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Fig. 4. Adds the CA attention mechanism 

 

K-Means++ clustering algorithm 

The initial anchor box in YOLOv5 is based on the data sets such as COCO 

(Common Objects in Context) or PASCAL VOC (The PASCAL Visual Object Classes), 

and the initial anchor box is finally obtained by using the K-means clustering algorithm. 

The implementation steps are as follows: 

a) Randomly select k samples from all samples as the initial clustering center. 

b) Calculate the Euclidean distance of each sample from the cluster center, and then 

divide the sample into the class closest to it. 

c) The center point position of each cluster is recalculated according to the 

clustering results. 

d) Repeat b) to c) until the internal elements in each cluster do not change, and all 

the final center point coordinates are the trained parameter model. 
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Fig. 5. K-Means++ algorithm flow chart 

 

  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Tian et al. (2023). “Defect detection with YOLOv5,” BioResources 18(4), 7713-7730.  7721 

In YOLOv5, Euclidean distance is used to identify the similarity between the 

sample marker boxes, which can easily cause the marker boxes in a certain class to be too 

close to the initial anchor box size, and this will ultimately affect the clustering effect. 

Given the above problems, this paper proposes a K-Means++ clustering algorithm. The 

clustered prior box is closer to the target box of the wooden spoon image data set. The 

specific process of the K-Means++ algorithm is shown in Fig. 5. 

K-Means++ is based on the traditional K-Means algorithm (Likas et al. 2003) to 

optimize the selection of the initial clustering center. The implementation steps of K-

Means++ to optimize the initialization centroid are as follows: 

Step 1: Set the spatial data set 1 2{ , ,..., }nP p p p=  of the input data point set, and 

randomly select a point ip  as the first clustering center 1K . 

Step 2: For each point in the set P , use Formula (7) to calculate the minimum 

distance ( )iD p  between each object in the set and the current existing cluster center, and 

use Formula (8) to obtain the Sum  of squares of these distances. 

2( ) min{( ( ) )}i i nD p p K= −        (7) 

2

1

( )
n

i

i

Sum D P
=

=         (8) 

Step 3: Calculate the probability P  of each point being selected as the next cluster 

center using calculation formula ( 9 ). Take a random number iR  between the interval [0,1], 

subtract 1 2{ , ,..., }iP P P  with iR  in turn, until the result is less than 0. The point 

corresponding to iP  is the next cluster center. 

2 ( )
( ) iD p

P i
Sum

=          (9) 

Step 4: Repeat steps 2 ~ 3 to find the cluster center that meets the requirements. 

Through the above steps, the optimized initial clustering center is obtained. 

 

Feature extraction network 

SPPnet (He et al. 2015) is placed after the last feature layer of CSPDarknet53. After 

three convolutions of the last feature layer, it is processed with four different sizes of 

maximum pooling. The sizes of four different sizes of pooling kernels are 13 13 , 9 9 , 

5 5 , and 1 1 . The structure is shown in Fig. 6. 

By adding SPP structure in YOLOv5, the receptive field is increased, the most 

important contextual features are separated, and the detection speed is not reduced. 

Through the analysis of the SPPnet structure, it is concluded that the SPPnet used in the 

YOLOv5 structure cannot effectively extract the feature information of different scale 

targets. The SPPnet module is used as a variable and added to different positions of the 

backbone network to increase the receptive field to extract important defect features and 

improve the accuracy of wood spoon defect detection. The improved network structure is 

shown in Fig. 7. 
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5*5 9*9 13*13

Conv2D_BN_SiLU

Conv2D_BN_SiLU
 

Fig. 6. Structure of SPPnet 
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Fig. 7. YOLOv5-TSPP network structure 

 

 

RESULTS AND DISCUSSION 
 

Evaluating Indicator 
According to the combination of the real label and the predicted label, each picture 

was divided into four categories: true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) (Zhao et al. 2021). Among them, TP is the object existing in the 

correctly recognized image, TN is the object existing in the image but not detected, FP is 

the object existing in the wrongly recognized image, and FN is the object existing in the 

image but not detected. Precision is the ratio of the number of positive samples correctly 

predicted to the number of positive samples predicted. Recall represents the proportion of 

the number of positive samples correctly determined to the total number of positive 

samples. The PR curve reflects the relationship between precision and recall rate. The 

higher the precision and recall rate of the model, the larger the area surrounded by the PR 

curve and the x, y-axis, and the better the overall performance of the model. AP is the area 

below the PR curve. The larger the AP, the higher the accuracy of the model. The smaller 

the AP, the worse the performance of the model. To evaluate the detection effect of the 

model obtained during training, the commonly used neural network performance 
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evaluation indicators are used in the experiment: Precision (P), Recall (R), and Average 

Precision (AP). The calculation formula is as follows: 

TP
P

TP FP
=

+
         (10) 

TP
R

TP FN
=

+
         (11) 

1

0
( )AP p r dr=          (12) 

 

Ablation experiment 

To show the performance of the proposed method in the detection and recognition 

of surface defects of wooden spoons, ablation experiments were carried out for different 

defects. The average precision (AP), precision (Precision), and recall (Recall) were used 

as evaluation indicators. The network detection model that introduces improved K-

Means++ clustering, CA coordinate attention mechanism, and re-adds a SPPnet structure 

has different degrees of improvement in accuracy, recall, and average accuracy compared 

with the original model. The experimental results show that the improved priori box 

determined by K-Means++ clustering can effectively improve the learning efficiency of 

the model for the target detection box. Secondly, because CA has a longterm dependence 

on location information and channel relationship, the introduction of CA effectively 

improves the efficiency of the model for location information learning and improves the 

prediction effect. Finally, a SPPnet network structure is added to realize the fusion of local 

features and global features, improve the learning efficiency of the model for features, and 

achieve better detection results. The experimental results are shown in Table 2. 

 

Table 2. Ablation Experiment 

Model 
mA

P 

Recall Precision AP 

B H K W B H K W B H K W 

YOLOv5X 
71.

12 

83.

75 

79.

73 

74.

04 

34.

21 

89.

40 

89.

39 

86.

41 

61.

29 

87.

81 

82.

70 

79.

09 

34.

88 

YOLOv5x+K

-Means++ 

71.

73 

84.

42 

79.

80 

74.

38 

34.

53 

90.

56 

92.

19 

86.

63 

61.

88 

88.

57 

84.

12 

79.

16 

35.

07 

YOLOv5x+

CA+K-

Means++ 

75.

08 

87.

13 

83.

78 

80.

37 

43.

21 

91.

21 

96.

88 

90.

79 

63.

16 

89.

11 

85.

65 

82.

74 

42.

47 

YOLOv5x+

CA+K-

Means+++S

PPnet 

80.

30 

87.

73 

90.

79 

83.

72 

55.

83 

92.

12 

98.

57 

92.

31 

69.

53 

89.

21 

92.

24 

85.

32 

54.

43 

Note: B represents the back crack defect, H represents the black knot defect, K represents the 
mineral line defect, and W represents the pollution defect. 

 

Analysis of Table 2 shows that after adding K-Means + +, CA attention mechanism, 

and SPPnet, the overall detection accuracy of the network model for back crack, black knot, 

mineral line, and pollution is significantly improved. Due to the factors of the formation of 
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pollution defects and the morphological reasons of the pollution defects themselves, the 

pollution defects are easily confused with other defects ( such as short mineral lines ) and 

the texture features of the wooden spoon, so the network model has a relatively low 

detection accuracy for pollution. 

Through the analysis and improvement of the YOLOv5 detection model, the 

detection precision images of the original model are shown in Fig. 8, and the detection 

precision images of the improved model are shown in Fig. 9. The recall images of the 

original model are shown in Fig. 10, and the recall images of the improved model are shown 

in Fig. 11. The PR images of the original model are shown in Fig. 12, and the PR images 

of the improved model are shown in Fig. 13. 

 

 

 

 
Fig. 8. Detection precision of YOLOv5 for four defects 
 

When the detection confidence is greater than or equal to 0.5, the detection result 

can be reliable. Figures 8 and 9 show that when the confidence level is 0.5, the detection 

accuracy of back crack, black knot, mineral line, and pollution defect is 89.40%, 89.39%, 

86.41%, and 61.29%. By using the above three improved strategies, the detection accuracy 

of the YOLOv5-TSPP detection model for back crack, black knot, mineral line, and 

pollution is 92.1%, 98.6%, 92.3% and 69.5%. The detection accuracy of the model for 

various defects has improved, indicating that the false detection rate of the model for 

various defects is decreasing. 
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Fig. 9. Detection precision of YOLOv5-TSPP for four defects 
 

 

 
 

Fig. 10. Recall of YOLOv5 for four defects 
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Fig. 11. Recall of YOLOv5-TSPP for four defects 
 

 

 
Fig. 12. The average precision of YOLOv5 for four defects 
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Fig. 13. The average precision of YOLOv5-TSPP for four defects 
 

By comparing the recall rate images of the YOLOv5 model and YOLOv5-TSPP 

model, when the confidence level is 0.5, the recall rates of back crack, black knot, mineral 

line, and pollution in YOLOv5 are 83.8%, 79.7%, 74.0%, and 34.2%, respectively. The 

recall efficiencies of back crack, black knot, mineral line, and contamination in YOLOv5-

TSPP were 87.7%, 90.8%, 83.7%, and 55.8%, respectively. YOLOv5-TSPP has a lower 

missed detection rate than YOLOv5. 

The larger the area of the P-R curve (AP), the better the performance of the 

corresponding model. When the area reaches the maximum value, the precision and recall 

of the model reaches the maximum value, and the false detection rate and missed detection 

rate of the model are lower. From Figs. 12 and 13, the APs of back crack, black knot, 

mineral line, and contamination in YOLOv5 were 87.8%, 82.7%, 79.1%, and 34.9%, 

respectively. The AP of back crack, black knot, mineral line, and contamination in 

YOLOv5-TSPP were 89.2%, 92.2%, 85.3% and 54.4%, respectively. Therefore, the 

performance of YOLOv5-TSPP was better than that of YOLOv5. 

 

Performance comparison of different models 

In order to verify the performance of YOLOv5-TSPP, the same data set was trained 

and tested on SSD and Centernet network models. The mAP, Recall, and Precision of the 

models were then compared and counted. The results are shown in Table 3, where B 

represents the back crack defect, H represents the black knot defect, K represents the 

mineral line defect, and W represents the pollution defect. 
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Table 3. Performance Comparison of Different Algorithm Network Models 

Model mAP 
Recall Precision 

B H K W B H K W 

SSD 38.47 17.65 5.41 4.33 0.16 85.71 57.14 72.22 20.00 

Centernet 62.85 66.74 72.97 62.23 39.09 90.21 88.52 85.19 56.60 

YOLOv5-TSPP 80.30 87.73 90.79 83.72 55.83 92.12 98.57 92.31 69.53 

 

Compared with the other two models, the YOLOv5-TSPP model achieved a better 

overall detection effect, and the mAP was 41.8% and 17.4% higher than SSD and 

Centernet. The precision and recall of the four defects were improved compared with SSD 

and Centernet. 

 
 
CONCLUSIONS 
 

1. When improving the YOLOv5 model to identify the four main types of defects (back 

cracks, black knots, mineral lines, and pollution) in wooden spoons, the identification 

parameters (precision, recall, and average precision) of black knots were the highest, 

and the recognition effect is better. 

2. The average accuracy of the improved YOLOv5 model for back crack, black knot, 

mineral line, and pollution identification results were 89.2%, 92.2%, 85.3%, and 

54.4%, respectively. 

3. Compared with the current mainstream detection models (SSD, Centernet), the 

improved model achieved higher accuracy, recall rate, and average precision rate. This 

indicates that the improved model exhibited a better recognition effect on the surface 

defects of wooden spoons than the other two mainstream detection models. 
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