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The goal of this work was to better meet the demand for rapid detection of 
surface defects in sawn timber in forestry production. This paper 
introduces a two-way feature fusion network based on the YOLO-v8 
algorithm and proposes a feature fusion network model that combines the 
attention mechanism and loss function optimization. In this way it 
increases the tiny target detection head in order to more effectively detect 
small defective targets in the wood, thus realizing the model's high-
efficiency and low-consumption functional design. The results show that 
the improved TSW-YOLO-v8n model realized the identification of eight 
kinds of defects in sawn timber with a high efficiency of 91.10% mAP50 
and an average detection 6 ms, which is 5.1% higher than the original 
model’s mAP50 and 1 ms shorter than the original model’s average 
detection time. The comparison of the original model and its mainstream 
algorithms shows that the model of this paper had better performance and 
better detection capability. Thus, the improved model achieved better 
overall performance and stronger detection ability, which provides a new 
idea for the development of detection technology in the forestry industry. 
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INTRODUCTION 
 

In the era of artificial intelligence, the wood industry is undergoing a profound 

transformation as it embraces a multitude of cutting-edge technologies, striving to integrate 

with emerging industries and achieve a high level of automation and intelligence. One 

particularly active area of technological exploration is the application of deep learning 

techniques to detect surface defects in wood. 

Traditional manual inspection methods for wood surface defects are marred by their 

inherent inefficiencies. They are time-consuming, demand a substantial labor force, and 

are generally inefficient (Qayyum et al. 2016). However, machine-based wood defect 

detection methods, although effective, bring their own set of challenges, including safety 

hazards, high costs, and intricate operational procedures. 

In stark contrast, the convergence of computer-based image processing techniques 

and deep learning technology, operating at the nanoscale level and harnessed by high-

performance processing units such as GPUs, presents a compelling solution. This approach 

boasts many advantages, including rapid processing speeds, cost-effectiveness, and ease of 

operation. These qualities make it exceptionally adept at identifying and classifying faults 
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in wood. This fusion of technologies offers a promising pathway to revolutionizing wood 

defect detection with efficiency and precision (Yang et al. 2018). 

Intelligent detection of wood defects can be categorized into two types, based on 

different prediction methods and processing procedures. The first type is single-stage wood 

defect detection, which is also known as a target detection algorithm based on regression 

analysis. This algorithm only requires one feature extraction to perform regression analysis 

on the target location and category information. The detection results are then output using 

a neural network model (Zhu et al. 2023). Common single-stage algorithms include 

OverFeat, the YOLO series, SSD, and RetinaNet. The second type is two-stage wood 

defect detection, also known as the target detection algorithm, based on region suggestions. 

This algorithm converts the target detection problem into processed suggested region 

image classification through explicit region suggestions. Common two-stage algorithms 

include R-CNN, SPP-Net, Fast R-CNN, and Faster R-CNN. These two algorithms have 

their respective advantages and disadvantages. Single-stage algorithms perform 

classification and regression directly without generating candidate regions, thus ensuring 

high efficiency and suitability for real-time object detection. However, they suffer from 

lower accuracy in detecting clustered objects and small targets. Two-stage algorithms, on 

the other hand, first generate candidate regions and then perform classification and 

regression. The benefit of this approach is higher algorithm accuracy, making it suitable 

for precision-driven object detection. However, this comes at the cost of reduced real-time 

detection capabilities and less effective small object detection. 

YOLO-v1 (the first version of You Only Look Once) network, the pioneer of 

YOLO series, was produced in 2016. It has received widespread attention due to its 

mechanism of direct target localisation and stereotyping of the target to be inspected 

without the need for pre-extraction of candidate features, which reduces the resource 

consumption and also improves the speed of the inspection. Wang et al. (2021a) proposed 

separable convolutional ideas to improve the YOLO-v3 network, but only in the 

recognition of the accuracy and speed of the improvement, for small defects such as cracks 

and small holes in the recognition of low efficiency. Kurdthongmee (2023) built a 

framework for a wood defect detection system based on YOLO-v3, which focuses on 

training the dataset so that it can meet the requirements of deep learning models in terms 

of size and variability. However, the method has limitations and the final recognition 

results are average. Cui et al. (2023) proposed an improved method based on the YOLO-

v3 network framework with Spatial Pyramid Pool (SSP) network. They obtained an 

accuracy of 93.23% for identification of wood defects in a test set with an industrial 

production detection time of less than 13 ms. Wang et al. (2021b) proposed an improved 

version of YOLO-v4 network and successfully achieved the identification and 

classification of live knots, dead knots, cracks, and insect eyes on the surface of domestic 

spruce sawn timber. However, YOLO-v4, as an enhanced version of YOLO-v3, has not 

changed its core idea, and still has the problem of misclassification and omission of small 

defects such as fine cracks and small holes.  

Based on the fact that the YOLO series does not make outstanding improvements 

for small defects on the surface of wood, Fang et al. (2021) focused on the detection and 

identification of wood knots. They used the YOLO-v5 detector to adaptively learn and 

extract knots on the surface of sawn timber. Unfortunately, they used the YOLO model for 

detecting knot defects and did not conduct experiments on knot classification, so the 

usefulness of the YOLO-v5 network for classifying wood knots has yet to be demonstrated. 

Cao et al. (2023) proposed a YOLOv5-LW method for detecting defects in lightweight 

wood boards. Their system combines the attention mechanism and feature fusion network 
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to solve the problems of slow detection speed and difficulty in deploying embedded devices 

for defect detection in wood boards. The approach reduces the number of parameters and 

computation of the whole model and improves the detection speed while improving the 

recognition accuracy. At present, the existing research on wood defect detection mainly 

has focused on detecting a single type or a few common defects, which cannot meet the 

needs of more delicate wood processing. Han et al. (2023) optimised the backbone network 

while introducing BiFPN in the neck to achieve a multi-scale weighted bidirectional feature 

fusion STC-YOLOv5, which achieved a better detection effect for the seven types of 

defects and has great potential for application in the field of forestry industry. 

The YOLO series of algorithms is well-regarded for their efficient detection 

capabilities, modular design, and simplicity, making them an attractive choice for single-

stage target detection tasks. Over time, various optimized and enhanced models within the 

YOLO series have emerged, gaining application in diverse fields, including wood defect 

detection. These algorithms, both in their basic form and as improved models, have 

significantly propelled the advancement of defect detection technology within the timber 

industry. They represent a valuable technological asset for improving production and 

enhancing the quality of life. 

Addressing the specific requirements of the wood industry, particularly the 

challenge of detecting small defects, this paper introduces an improved YOLO-v8 

algorithm, denoted as TSW-YOLO-v8n. The primary objective of this enhanced algorithm 

is to excel in the detection of small defects while keeping computational resource 

requirements manageable. It strives to enhance the accuracy and speed of detecting surface 

defects in sawn timber, meeting the demand for high-precision real-time detection. 

The proposed algorithm’s performance is rigorously validated using a custom-

made dataset, ensuring that it meets the stringent requirements for defect detection tasks 

within the wood industry. This research contributes to advancing the state-of-the-art in 

wood defect detection and reflects the ongoing evolution of YOLO-based algorithms for 

diverse applications. The main contributions of this study are: 

1. Adding tiny target detection heads to improve the ability of the YOLO-v8 model 

for small defect detection. 

2. Fusing YOLO-v8 model using the Triplet Attention mechanism to further improve 

the model’s ability to detect small defects. 

3. Adopting BiFPN bidirectional cross-scale connectivity with weighted feature 

fusion to improve the accuracy and efficiency trade-off of the model. 

4. Introducing the Wise-IoU loss function to enhance the ability of YOLO-v8 model 

to capture information and improve the defect information learning ability. 

 

 

EXPERIMENTAL 
 

Wood Defects Dataset 
The dataset used for the experiment was from a large dataset of wood surface defect 

images provided by (Kodytek et al. 2022). To ensure the reliability and utility of the 

experimental data, a screening process was conducted based on the original dataset. This 

screening resulted in the selection of 3,612 defective wood defect images (as shown in Fig. 

1). To augment the dataset and enhance its diversity, various image processing techniques 

were applied. Specifically, six methods were employed, including random combinations 
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of pixel point removal, sharpening, affine transformation, brightness adjustment, random 

hue modification, and horizontal flipping. These methods were randomly applied to the 

original defective images, generating a total of 18,060 augmented defective datasets. When 

combined with the original images, this resulted in a dataset comprising 21,672 images in 

total.  
 

 
 
Fig. 1. Eight kinds of defects on the surface of sawn timber 
 

To facilitate the machine learning experiments, the dataset was divided into three 

subsets: a training set, a validation set, and a test set, distributed in an 8:1:1 ratio. This 

division ensures that the dataset is appropriately utilized for model training, validation, and 

evaluation, respectively. 

The enhanced dataset utilized in this study encompasses eight distinct types of 

defects, including live knots, dead knots, and cracks, among others. Figure 2 provides 

relevant insights into the characteristics of these defects within the dataset: 

1. Figure 2-a presents an overview of the distribution of various defects in the dataset. 

It is notable that live and dead knots predominate in the dataset, mirroring real-

world scenarios. 

2. Figure 2-b illustrates the size distribution of the bounding boxes for different 

defects in the dataset. 

3. Figure 2-c offers an insight into the distribution of coordinates for the center points 

of the bounding boxes for various defects. It appears that the center points are 

concentrated towards the middle of the bounding boxes. 

4. Figure 2-d displays a scatter plot showing the relationship between the width and 

height of the defective bounding boxes. The concentration of dark-colored blocks 

in the lower-left corner indicates that small defects constitute the majority of 

instances in this dataset. 
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(a)      (b)         (c)            (d) 

 
Fig. 2. Dataset infographic 

 

These visualizations provide valuable information about the composition and 

characteristics of the dataset, highlighting the prevalence of certain defect types and their 

size distribution. 

 

TSW-YOLO-v8n 
The YOLO-v8 model represents a significant advancement in object detection and 

instance segmentation, building upon the foundations of the previously introduced YOLO-

v5 by ultralytics at the beginning of 2023. YOLO-v8 not only achieves enhanced speed 

and accuracy compared to its predecessors but also extends its capabilities to support a 

range of tasks, including image classification, object detection, and instance segmentation. 

This makes it a versatile and high-performance algorithmic model suitable for multitasking 

scenarios. 

 For this paper’s objectives, YOLO-v8n was chosen as the base model for 

enhancement, considering practical real-world considerations. YOLO-v8n was selected 

because it offers a relatively small pre-training model size of only 6MB, making it suitable 

for deployment on mobile devices, while also maintaining a fast detection speed. 

However, YOLO-v8n’s detection performance, although fast, does not meet the 

rigorous requirements of factory applications when it comes to detecting surface defects 

on sawn timber. To address this, this paper introduces four key improvements to YOLOv8, 

resulting in the development of an advanced intelligent detection model called TSW-

YOLO-v8n. These enhancements encompass the addition of a tiny target detection head, 

the incorporation of an attention mechanism, the integration of a feature fusion mechanism, 

and the optimization of the loss function. The schematic structure of the improved TSW-

YOLO-v8n model is visually depicted in Fig. 3, showcasing the novel architecture 

designed to achieve superior performance in the detection of surface defects in sawn 

timber. 
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Fig. 3. TSW-YOLO-v8n structure diagram 

 

Small target detection head 

To enhance the YOLOv8 model’s capability for detecting small targets, a novel 

small-target detection head was introduced in response to the specific requirements of this 

paper’s dataset. This new detection head is seamlessly integrated with Bi-FPN features, 

effectively bolstering the model's performance when it comes to detecting small targets. 

This strategic addition and fusion of features cater to the unique characteristics of 

the dataset, ensuring that the model excels in identifying and accurately detecting small 

targets, further enhancing its overall detection performance. 

 

Triplet Attention mechanism 

Wood, as a natural plant material, exhibits a significant challenge in defect 

detection due to the seamless integration of defects with the wood itself. Sawn timber 

defects often blend into the background, making them challenging to detect. To address 

this issue, the Triplet Attention mechanism is introduced to enhance the YOLO-v8 model’s 

ability to capture information interactions across different dimensions. This augmentation 

aims to improve the model's capacity to detect defects when they are intertwined with the 

texture background of sawn timber. 

Furthermore, the Triplet Attention mechanism is engineered to be computationally 

efficient while delivering substantial performance improvements. This efficiency aligns 

with the practical requirements of the enhanced YOLO-v8 model, particularly for the 

deployment of mobile inspection devices. 

In this paper, the Triplet Attention mechanism is integrated after the last C2f 

module of the YOLO-v8 backbone network. This strategic placement addresses the 

challenge of defects blending into the background, redirecting the network's attention 

towards surface defects on sawn timber and effectively separating them from the 

background during the inspection task. The schematic diagram illustrating this integration 

is presented in Fig. 4. 
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Fig. 4. Triplet Attention structure diagram 

 

The Triplet Attention mechanism (Misra et al. 2020) is structured with three 

parallel branches. Two of these branches are responsible for capturing interactions across 

different dimensions: one focuses on interactions between the channel dimension (C) and 

the spatial dimensions (H or W), and the last one is used in the same way as in Woo et al. 

(2018) to build spatial attention. The outputs of all three branches were combined by 

averaging their respective weights and then aggregated. 

This innovative design with cross-latitudinal interaction addresses the conventional 

computational model’s challenge of separating channel attention and spatial attention. 

Instead, it captures the spatial dimension’s interaction with the channel dimension within 

the same framework. In essence, it simultaneously captures information interactions in 

three dimensions: (C, H), (C, W), and (H, W), which represent the interactions between 

channel, height, and width dimensions of the input data, respectively. 

 

BiFPN feature fusion 

The YOLO-v8 model utilizes the Feature Pyramid Network (FPN) to integrate 

multi-scale features from an image through the conventional top-down pathway. This 

approach results in the generation of different feature maps by downsizing the image, 

allowing predictions to be made on each of these feature maps. While this strategy aids the 

model in identifying targets of various sizes, it comes with several drawbacks, including a 

high demand for computational resources, sluggish inference times, and a lack of suitability 

for real-time detection tasks. These limitations do not align with the objectives of this paper. 

To address these challenges, the paper introduces the BiFPN (Bidirectional Feature 

Pyramid Network, Tan et al. 2020). The BiFPN mechanism incorporates bidirectional 

cross-scale connectivity and a weighted feature fusion approach. This enhancement not 

only bolsters the model’s feature extraction capabilities but also mitigates the 

computational resource overhead. Additionally, it accelerates detection speed and 

optimizes the model’s real-time detection capabilities by adjusting the weights and fine-

tuning the contribution of each scale to the feature fusion network. This innovation 

represents a more efficient and effective approach to multi-scale feature integration for 

improved model performance. 

Figure 5 vividly illustrates the BiPFN (Bilateral Pyramid Feature Network) feature 

fusion mechanism, which represents a significant departure from the traditional 

unidirectional information flow in FPN (Feature Pyramid Network) as shown in (a). This 

innovative approach is designed to enhance the model’s efficiency by introducing an 

additional connection when the original input and output nodes are at the same level. This 

addition enables the fusion of more features with only a minimal increase in computational 

cost. 
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Fig. 5. BiFPN and PFN structure comparison diagram 

 

Moreover, the BiPFN framework incorporates both top-down and bottom-up 

pathways, which are considered as feature network layers that are recurrently activated. 

This design choice facilitates extensive feature fusion, significantly amplifying the amount 

of feature extraction information available to the model. Consequently, this approach 

augments the model's feature extraction capacity and overall efficiency, effectively 

meeting the real-time detection requirements. 

 

Wise-Iou loss function 

In this study, surface defects in sawn timber, particularly live and dead knots, 

constitute a significant proportion of the dataset. These defects often present a challenge 

due to their relatively small sizes. While YOLOv8 employs Distance-IoU (DFL) and 

Complete-IoU (CIoU) for computing bounding box regression loss, CIoU exhibits 

limitations. It not only neglects the balance issue between difficult and easy samples but 

also struggles with accurately representing aspect ratios, resulting in imprecise detection 

outcomes. 

To address these shortcomings, this paper introduces Wise-IoU (Tong et al. 2023), 

a pixel-level semantic segmentation loss function for deep learning models. Wise-IoU is 

calculated by assessing the similarity between two binary images, essentially quantifying 

the weighted average of Intersection over Union (IoU) between the predicted segmentation 

mask and the true segmentation mask. The work by Tong et al. presents three versions of 

Wise-IoU, with version 3 (v3) incorporating attention-based prediction frame loss and the 

inclusion of focusing coefficients. These enhancements empower the model to better 

localize defects while leveraging the strengths of EIoU (Enhanced IoU) and SIoU (Scaled 

IoU), with a particular emphasis on dynamically optimizing loss weights for small defects. 

This holistic approach contributes to a significant improvement in the detection 

performance of YOLO-v8. 

The specific formula for Wise-IoU v3 is depicted in Eq. 1. 

 
3 3 = r ,  =  WIoUv WIoUv r

 



 −
L L       (1) 

(a) PFN   (b) BiFPN 
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 In Eq.1, 𝛽 denotes outlier, r denotes gradient gain, α and δ  are hyperparameters.When 

= , so that r = 1, the anchor frame has the highest gradient gain when the outlier of the 

anchor frame satisfies = C (C is a constant). Therefore it has a dynamic anchor frame 

quality division criterion, which enables WIoUv3 to give the most appropriate gradient 

gain allocation strategy at different moments. 

 

Experimental Environment  
Experimental environment 

The experimental environment configuration is outlined in Table 1. Specifically, 

the training parameters used in this experiment are as follows: 

1. Input image size: 640 pixels 

2. Iteration period: 400 iterations 

3. Batch size: 16 

4. Initial learning rate: 0.001 

5. Weight decay coefficient: 0.0005 

6. Intersection over Union (IoU) threshold for testing: 0.7 

 

Table 1. Experimental Environment Configuration 

Configuration Version Parameter 

System Environment Windows 10 Professional 21H2 

Central Processor 
13th Gen Inter(R) Core(TM) i5-13600KF 

3.50GHz 

Graphics Processor NVIDIA GeForce RTX 4060Ti 8GB 

Graphics Processor Accelerator Library CUDA 11.8.0, CUDNN8.0 
Random Access Storage 32.0 GB 

Deep Learning Environment Pytorch 2.0.1 

Deep Learning Frameworks Python 3.9.16 

 

Performance indicators 

In order to assess the detection effect of the improved model, the common 

evaluation indexes for wood defect detection were selected:Precision, Recall, F1 Score, 

mAP and Confusion Matrix. 

 

 

RESULTS AND DISCUSSION 
 
Comparison with YOLO-v8 and its mainstream models 

To substantiate the effectiveness of the enhanced model, TSW-YOLO-v8n, in 

terms of detection performance, a comparative experiment was conducted against the 

original YOLO-v8 model. As presented in Table 2, the results underscore the substantial 

improvements achieved by the enhanced model. Specifically, the mean average precision 

(mAP) was elevated by 5.1%. Across various defect categories, there were notable 

enhancements, with the exception of “missing nodes.” Particularly noteworthy is the 

improved capability to detect small defects, such as live knots, dead knots, and cracks, 

which exhibit significant performance gains. Furthermore, the improvement in Quartzity 

detection exceeded 20%. These findings demonstrate that the enhanced model effectively 

enhanced the detection accuracy of small defects and overall elevated the model’s detection 

performance. 
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To further underscore the superiority of the current TSW-YOLO-v8n model, we 

also comprehensive comparisons and testing were conducted with other prominent models, 

as detailed in Table 2.  

The outcomes of these comparative tests, as presented in the table, unequivocally 

showcase the exceptional detection performance of the enhanced model proposed within 

this paper. Notably, while mitigating issues associated with substantial target positioning 

errors and the challenging task of detecting small targets inherent to the YOLO series, this 

improved model simultaneously enhanced both recognition and detection capabilities 

pertaining to small defects. 

 

 

Table 2.  Comparison of Defect Identification Diagrams between YOLO-v8n and 
Mainstream Models and TSW-YOLO-v8n 

Defect 
 
Model 

Live 
Knot 

Dead 
Knot 

Knot 
with 
crack 

Knot 
missing 

Crack Resin Marrow Quartzity mAP 

YOLO-
v8n 

94.7% 94.6% 79.2% 89.6% 92.7% 94.9% 98.0% 44.4% 86.0% 

Faster 
R-CNN 
(Shih et 
al. 2019) 

77.70% 86.30% 88.30% 88.40% 84.40% 81.80% 85.30% 83.50% 84.80% 

SSD 
(Liu et 
al. 2016) 

61.00% 71.67% 40.27% 66.33% 53.92% 54.66% 59.94% 75.74% 60.44% 

YOLO-
v5  

88.10% 90.90% 71.70% 75.10% 77.80% 90.80% 97.40 50.30% 80.30% 

TSW-
YOLO-
v8n 

96.6% 97.7% 88.30% 82.4% 99.0% 97.9% 98.8% 68.5% 91.1% 

 

Figure 6 illustrates the change curves of key evaluation metrics throughout the 

training process, depicting a comparison between the improved model and the original 

model. The metrics are presented as follows: 

 

(a) Comparison of classification loss (cls_loss) between the model's training 

classification results and actual ground truth annotations. 

(b) Comparison of precision in model recognition. 

(c) Comparison of the mean average precision (mAP) for each individual category. 

(d) Comparison of the recall rate (recall). 
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   (a)     (b) 

  
(c) (d) 

  
Fig. 6.  Comparison between YOLO-v8n and TSW-YOLO-v8n 

 

From the figure, it is evident that the improved TSW-YOLO-v8n model surpassed 

the original YOLO-v8n model across all metrics. Moreover, the trend of the curves reveals 

that the enhanced model maintained greater stability and exhibited superior detection 

performance throughout the training process. 

 

Visual Results Analysis 
In light of the challenge posed by the limited interpretability of deep learning 

models, an analysis was conducted of the model's detection performance improvement 

through two distinct lenses: the examination of the confusion matrix and a thorough 

evaluation of the model's inference results. 

 

Confusion matrix result analysis 

As evident from Fig. 7-a, the diagonal region of the confusion matrix in the 

enhanced TSW-YOLO-v8n model exhibited a notably darker hue compared to the diagonal 

region of the confusion matrix in YOLO-v8n, as depicted in Fig. 7-b. This discrepancy 

serves as a visual indicator of the improved model’s heightened capability in detecting 

various defect categories to a significant extent. 
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(a)             (b) 

 
Fig. 7. (a)  TSW-YOLO-v8n confusion matrix diagram; (b) YOLO-v8n confusion matrix diagram 

 

Analysis of picture reasoning results 

Eight sawn timber images were randomly selected to construct a graphical 

representation, and subsequently, defect detection was carried out using both the YOLO-

v8n and the enhanced TSW-YOLO-v8n models. As depicted in Fig. 8-a, one live knot and 

one dead knot remained undetected, with a total processing time of 7 milliseconds. 

Conversely, the predictions generated by the improved TSW-YOLO-v8n model, illustrated 

in Figure 8-b, not only successfully identified the previously overlooked defects in Fig. 8-

a but also accomplished this task within a reduced total processing time of 6 milliseconds. 

 
 

 
 
 
Fig. 8. (a) YOLO-v8n picture inference results ; (b) TSW-YOLO-v8n image inference results 

 

While this paper’s improved method primarily targets the detection of small targets, 

it acknowledges that the enhancement in Quartzity is relatively modest, and the recognition 

accuracy remains suboptimal. Consequently, future research endeavors should concentrate 

on further optimizing the model’s detection accuracy, particularly in the context of small 

target defects. 

 

  

(a)      (b) 
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CONCLUSIONS 
 

1. In response to the prevalence of small defects such as live knots, dead knots, and cracks 

on the surface of sawn timber, coupled with the substantial fusion between sawn timber 

texture features and defects, this paper introduces a lightweight sawn timber surface 

defects detection model known as TSW-YOLO-v8n, which was built upon the YOLO-

v8n framework. 

2. The primary focus of the TSW-YOLO-v8n model lies in addressing the challenges 

posed by the detection of small, hard-to-identify defects and the substantial blending 

of defects with the background. To achieve this, the model employs an improvement 

strategy that enhances its performance while minimizing its computational footprint. 

Notably, the improved model enhances detection efficiency and accuracy, achieving a 

5.1% increase in average detection accuracy compared to the original model. It 

accomplishes defect detection with an impressive elapsed time of 6 ms, significantly 

elevating its defect detection capabilities. Furthermore, the improved model surpasses 

mainstream algorithms in terms of detection accuracy. 
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