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Based on the sclereids in the bark of oak species, a convolutional neural 
network (CNN) was employed to validate species classification 
performance and its influencing factors. Three optimizers including 
stochastic gradient descent (SGD), adaptive moment estimation (Adam), 
root mean square propagation (RMSProp), and dataset augmentation 
were adopted. The accuracy and loss stabilized at approximately 15 to 20 
and 70 to 80 epochs for the augmented and non-augmented condition, 
respectively. In the last five epochs, the RMSProp-augmented condition 
achieved the highest accuracy of 89.8%, whereas the Adam-augmented 
condition achieved the lowest accuracy of 73.8%. Regarding the loss, 
SGD-non-augmented condition was the lowest at 0.498, whereas Adam-
augmented condition was the highest at 2.740. The highest accuracy was 
influenced by RMSProp at 0.194. Dataset augmentation had a significant 
influence on accuracy at 0.456. Homogeneous subsets among the 
validation conditions indicated that the accuracy and loss were classified 
into the same subset using an augmented dataset during the training, 
regardless of the optimizer. Only Adam and RMSProp with non-
augmented datasets were categorized into the same subset during the 
test. Hence, species classification using CNN and sclereid characteristics 
in the bark was feasible, and RMSProp with augmented datasets showed 
optimal performance for species classification. 
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INTRODUCTION 
 

Globally, there is excess demand for wood (UNECE 2007), resulting in a gradual 

appreciation of the value of wood as a resource in various sectors. Species identification is 

increasingly recognized as a significant process for enhancing value of wood resources and 

is required in numerous fields such as optimizing the utilization of conventional wood 

resources, protecting endangered species, and facilitating practical customs clearance 

operations. 
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Recently, there has been a surge in research aimed at automating the classification 

of wood species and enhancing their precision of automated classification. These efforts 

have been driven by the objectives of streamlining the process and reducing subjectivity. 

Ilic (1993) proposed the potential for computer-based automated species identification, 

while Wheeler and Baas (1998) emphasized the importance of computer-aid specification 

identification. Since the 2000s, studies applying computer vision to identify wood species 

have been conducted in earnest. Tou et al. (2007) proposed a system to identify wood 

species in real time using macroscopic images of wood cross sections. Bremananth et al. 

(2009) attempted to computerize a wood species recognition system using computer vision 

technology. In the 2010s, research on artificial intelligence-based wood species 

identification increased explosively, owing to the rapid development of computing 

performance and machine learning technology. As a representative example, Hermanson 

and Wiedenhoeft (2011) introduced an overview and advantages of species identification 

using machine vision in their review paper. Since the first meeting of the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) in 2010, many high-performance 

convolutional neural network (CNN) models, such as VGGNet (Simonyan and Zisserman 

2015), GoogLeNet (Szegedy et al. 2015), and ResNet (He et al. 2016) have been 

developed. These inventions have led to rapid developments in image classification using 

CNN. 

Recently, CNNs have been employed to classify wood species using datasets 

containing wood images. Kwon et al. (2017) reported the possibility and performance of 

softwood species classification using CNN-based models, such as LeNet and 

miniVGGNet. Kwon et al. (2019) improved the performance of automated species 

classification by using a CNN with ensemble methods. Yang et al. (2019) also employed 

a CNN with ensemble methods for classifying Korean softwood species using datasets 

from near-infrared spectra (NIR) analysis results and macroscopic images of radial 

sections. Hwang et al. (2020) attempted to visualize anatomical features using machine 

learning technology for quantitative analysis. Zhao et al. (2021) demonstrated the efficacy 

of a CNN for accurately classifying various wood species based on microscopic image 

datasets. Huang et al. (2021) demonstrated the efficacy of a transfer-learning model with 

enhanced pooling layers for enhanced wood identification using cross-sectional wood 

images. Hwang and Sugiyama (2021) conducted a methodological examination of 

computer-vision-based species identification. Their research anticipated the potential of 

computer vision to enhance the accessibility of wood identification to the public and make 

significant contributions to the field of wood science. Cao et al. (2022) utilized an artificial 

neural network trained using species-specific thermal conductivity trends to classify 

different species.  

Most studies on wood species identification have focused on the xylem anatomical 

characteristics (Kim et al. 2021; Savero et al. 2022; Savero et al. 2023). However, bark 

also displays distinct characteristics in each species, rendering it a helpful tool for species 

identification (IAWA Committee 2016). Species identification using bark has a notable 

benefit because bark can be obtained from standing trees without timber harvesting. A few 

studies (Fiel and Sablatnig 2010; Bertrand et al. 2017; Carpentier et al. 2018; Kim et al. 

2022) have attempted to utilize bark for automated species identification using artificial 

intelligence. They focused only on the outer appearance of the bark from standing trees for 

dataset preparation. However, the anatomical features of the bark could be more systematic 

than the surface features, showing a higher efficiency in feature selection and extraction, 

which affects species classification performance using computer vision. Sclereids are 
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sclerenchyma cells that are variable in form and size, but typically not much elongated, 

with thick, often polylamellate, lignified secondary walls with many pits. They develop 

mainly in the nonconducting phloem, cortex, and periderm by modification of parenchyma 

cells. However, there are some examples of earlier development directly from cambial 

derivatives. Sclereids are extremely variable in size and shape, and this diversity has been 

classified into different sclereid types for the plant body, including brachysclereids, 

columnar sclereids, osteosclereids, astrosclereids, and filiform sclereids. Thus, sclereids 

can be used as keys for species differentiation (IAWA committee 2016).  

Therefore, in the present study, the performance and performance-influencing 

factors of CNNs using sclereid characteristics in the bark to identify seven oak species were 

investigated. Three optimizers, stochastic gradient descent (SGD), adaptive moment 

estimation (Adam), and root mean square propagation (RMSProp), were used to analyze 

the feasibility and efficacy of the classification performance of the wood species.  

 
 
EXPERIMENTAL 
 

Materials 
The barks of six domestic oak species obtained from the research forest of 

Kangwon National University, and Quercus suber, donated by FC Korea Land Co., Ltd. 

(Seoul, Korea), were used in this study. Three stems of each of the six domestic oak species 

were harvested, and bark samples were collected from the breast height of the stems. 

Several Q. suber bark samples with dimensions of 60 × 100 cm were also used. 

Comprehensive information about the samples is presented in Table 1. 

 

Table 1. Sample Information 

Scientific Name D.B.H. (cm)* Origin 

Quercus dentata Thunb. 22.7 ± 1.8 Research Forest of  
Kangwon National University 

(Chuncheon, Korea N37.7748857, 
E127.8134654) 

Quercus serrata Murray 27.7 ± 3.7 

Quercus mongolica Fisch. ex Ledeb. 25.4 ± 2.3 

Quercus variabilis Blume 25.5 ± 3.1 

Quercus aliena Blume 20.7 ± 4.9 

Quercus acutissima Carruth. 22.1 ± 6.2 

Quercus suber L. ** Planks of 
60 × 100 

cm 

Portugal cork provided by  
FC Korea Land Co., Ltd. 

(Seoul, Korea) 

*D.B.H.: Diameter at breast height 

 

Methods 
Sample preparation for the dataset 

Wood discs (3 cm thick) were prepared using a chainsaw from the breast height of 

each oak trees. The barks were carefully detached from the discs. After separating the bark 

from the disc, a table saw (Professional Cabinet Saw model with 100-teeth saw blade, 

SawStop, Oregon, USA) was used to cut the top and bottom of the bark specimen to a 

uniform thickness of about 1 cm for easier microscopic observation. Transverse sections 

were sanded using a series of progressively finer sandpapers: #80, #120, #220, and #400. 

After the sanding treatment, the surface was cleaned using an air compressor. Twenty 

specimens of each species were examined using a visual microscope (MM-40, Nikon, 

Tokyo, Japan) equipped with a 2.5X objective lens (CF Plan 2.5X, Nikon, Tokyo, Japan). 
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Digital micrographs of the inner phloem of the bark specimens were obtained using a 

microscope camera (IMTCam; IMT, British Columbia, Canada) and subsequently used as 

a dataset. The collection contained 1,400 (200 for each species) microscopic images. 

 

General macroscopic features 

Sclereid characteristics, which are representative macroscopic anatomical features 

of the seven oak species, were analyzed using micrographs obtained to prepare a dataset. 

Five micrographs of each species were analyzed to determine the quantitative 

characteristics of the sclereids. The number of sclereids within one micrograph (3.75 × 

2.50 mm), the area of individual sclereids, and the minimum and maximum area of 

sclereids for each species were measured.  

 

Dataset pretreatment 

The training dataset was augmented to examine the influence of the dataset size on 

the training procedure for the neural network architecture. Several parameters were applied 

to quantitatively pretreat and augment the dataset images. The parameters included 

rescaling the data using a ratio of 1/255 for normalization, 10° rotation, shifting the data 

horizontally and vertically by 10%, zooming the data by 20%, and performing horizontal 

and vertical flipping. Figure 1 illustrates the examples of data augmentation. 

 

 
 

Fig. 1. Example micrographs of Quercus aliena: (a) original image; (b-k) augmented images 

 

The dataset consisted of 1,400 images, with 200 images per species. The dataset 

was divided into 80% for training and 20% for testing. The test dataset was created by 

using a file random extraction program to extract 40 out of 200 images of each species 

dataset. The selected images were then saved in the separated paths with the training 

dataset. Data augmentation was exclusively implemented on the training dataset. Table 2 

shows the disparity in quantity between the pre- and post-augmentation data. 
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Table 2. Composition of Training and Test Dataset in Augmentation 

Scientific Name Non-augmented Augmented 

Train 
(80%) 

Test 
(20%) 

Sum Train Test Sum 

Quercus dentata 160 40 200 1,773 40 1,813 

Quercus serrata 160 40 200 1,761 40 1,801 

Quercus mongolica 160 40 200 1,768 40 1,808 

Quercus variabilis 160 40 200 1,751 40 1,791 

Quercus aliena 160 40 200 1,784 40 1,824 

Quercus acutissima 160 40 200 1,764 40 1,804 

Quercus suber 160 40 200 1,778 40 1,818 

Total 1,120 280 1,400 12,379 280 12,659 

 

Verification factors influencing CNN 

Classification performance and the factors influencing performance were analyzed 

using basic CNN architecture, as depicted in Fig. 2. The architecture of the CNN was 

designed by referring to the general structure reported in the past (Elgendy 2021; Loy 

2020). The CNN design comprised four convolutional layers, four MaxPooling layers, and 

two fully connected layers. Furthermore, the model was enhanced by incorporating two 

dropout layers and a flattened layer. Finally, the Softmax activation function was applied. 

 

 
 

Fig. 2. Convolutional neural network architecture for species classification in the present study 
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The CNN architecture was trained using a dataset comprising seven oak species. 

Categorical cross-entropy was used as the loss function for the multiclass classification. 

Optimizers are tools used to optimize the resources used during weight updates in each 

training phase (Cho 2018). In this study, three specific optimizers (i.e., SGD, Adam, and 

RMSProp) were used and compared to assess the influence of different optimizers on the 

efficiency of a CNN. The learning rates for each optimizer were set to SGD 0.0001, Adam 

0.001 (default), and RMSProp 0.00001, respectively. 

 

Statistical analysis of factors influencing CNN 

Bivariate correlation analysis (SPSS 26.0; IBM, New York, USA) was used to 

examine the Pearson correlation coefficients between the variables. The optimizer type and 

augmentation for the analysis were used as nominal variables, whereas the accuracy and 

loss rate were used as scale variables. Additionally, a one-way ANOVA and Duncan’s 

post-hoc analysis were used to examine the homogeneous subsets of the results. 

 

 

RESULTS AND DISCUSSION 
 

Figure 3 shows cross-sectional micrographs of the bark of the seven oak species in 

the dataset. Except for Q. suber bark, sclereids were found in the bark of all species. The 

sclereids’ size, shape, and frequency varied among the species. Table 3 shows a 

comparison of the number of sclereids per unit area and the size of individual sclereids by 

species. The sclereids in Q. variabilis and Q. aliena (181.9 × 103 µm2 and 175.4 × 103 µm2, 

respectively) were larger than those in the other species, while Q. serrata and Q. acutissima 

showed smaller sizes (52.7 × 103 µm2 and 65.4 × 103 µm2, respectively) compared to other 

species. This represented 2- to 4-fold differences in the sclereids size between species. Q. 

variabilis and Q. aliena showed lower sclereid frequencies than other species. As shown 

in Fig. 3f, sclereids in Q. acutissima, in particular, had a large variation in size. Prasetia et 

al. (2022) previously reported that sclereids were frequently found in the bark of Q. 

variabilis and were absent in Q. suber. Kim (1993) conducted a similar study on the 

anatomical characteristics of Q. variabilis and Q. suber and reported that sclereids were 

rarely present in Q. suber.  

 

Table 3. Quantitative Characteristics of Sclereids in the Six Oak Species 

Quantitative 
Factors 

Q. 
dentata 

Q.  
serrata 

Q. 
mongolica 

Q. 
variabilis 

Q. 
aliena 

Q. 
acutissima 

Sclereids number 
in 9.4 mm2 

35.0 ± 
2.6bc 

10.0 ± 
2.6a 

26.0 ± 
3.6abc 

19.3 ± 
10.2ab 

20.7 ± 
4.0ab 

39.3 ± 
16.9c 

Area of 
sclereids 
(1,000 
µm2) 

Area 
range 
(Min–
Max) 

11.2–
314.4 

7.2–
226.2 

12.2–
434.2 

7.2–
892.4 

14.2–
845.8 

2.8–400.1 

Averag
e area 

72.7a 52.7a 125.3b 181.9c 175.4bc 65.4a 

Note: Sclereids were not observed in the bark of Q. suber. The same superscript lowercase 
letters beside the mean values in the same row denote non-significant outcomes at the 5% 
significance level for comparisons between species. 
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Fig. 3. Cross-section micrographs of the barks from seven Quercus species: Quercus dentata 
(a), Quercus serrata (b), Quercus mongolica (c), Quercus variabilis (d), Quercus aliena (e), 
Quercus acutissima (f), and Quercus suber (g). White arrows indicate sclereids. Scale bars: 
1,000 µm 
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Table 4. Comparison of Average Loss and Accuracy on the Last Five Steps Per 
Optimizer 

 SGD Adam RMSProp 

Non-aug. 
Aug-

mented 
Non-aug. 

Aug-
mented 

Non-aug. 
Aug-

mented 

Training 
Process 

Loss 0.430d 0.001a 0.020ab 0.032b 0.365c 0.031b 

Accuracy 0.833a 1.000c 0.996c 0.995c 0.860b 0.996c 

Test 
Process 

Loss 0.498a 0.855ab 0.843ab 2.740c 0.623ab 1.021b 

Accuracy 0.820ab 0.830ab 0.798a 0.738a 0.795a 0.898b 

Note: The same superscript lowercase letters beside the mean values in the same row denote non-
significant outcomes at the 5% significance level for comparisons between species. 

 

Table 4 lists the average losses and classification accuracies during the last five 

stages for each validation condition. During the training phase, Adam produced the lowest 

loss and highest accuracy, suggesting superior performance irrespective of the 

implementation of data augmentation. However, Adam’s performance was relatively poor 

compared to the other optimizers during the test phase. SGD demonstrated a classification 

accuracy of approximately 83%, whereas RMSProp achieved a classification accuracy 

ranging from 79% to 90%. SGD is a function related to the random extraction and 

calculation of partial data at each learning stage and updating them more quickly and 

frequently. RMSProp is a function of applying an exponential moving average to prevent 

gradient loss problems, which can be obtained by lowering the reflection weight of the 

initial training and increasing the reflection weight of the recent gradient, thereby 

preventing the vanishing gradient problem during early training (Géron 2020). Therefore, 

in this study, SGD demonstrated superior performance in high-resolution microscopic 

image analysis required for species classification using bark, while RMSProp showed 

excellent performance in microscopic image analysis of the bark despite potential 

variations. 

The classification accuracy and loss of bark for the seven oak species using a CNN 

are shown in Figs. 4 and 5. Under most training and test conditions, there was a notable 

increase in accuracy and a decrease in loss as the number of epochs progressed. 

Nevertheless, a noteworthy anomaly was detected in the training phase when the Adam 

optimizer was employed with the augmented datasets. In this particular instance, the 

observed loss exhibited an increasing pattern as the number of epochs increased, in contrast 

to the outcomes observed under other conditions. The observed pattern indicates 

overfitting, a phenomenon in which the model demonstrates high performance on data that 

closely resemble the training set, but exhibits poor performance on test or validation data 

(Oh 2021). This was because the noise generated during the augmentation process of the 

dataset negatively affected the learning results and only caused overfitting when the Adam 

optimizer with an augmented dataset was used for training. In this study, all conditions 

except the Adam-augmented dataset condition exhibited a notable trend of reduced loss 

and enhanced accuracy as the number of epochs increased, particularly when utilizing the 

augmented dataset as opposed to the non-augmented dataset. The utilization of the 

augmented dataset led to the stability of both the loss and classification accuracy after 

roughly 15 to 20 epochs, whereas the non-augmented dataset needed approximately 70 to 

80 epochs for stabilization.  
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Fig. 4. Verification results of convolutional neural networks (CNNs) architecture for the seven oak 
species classification using the barks in training phase 
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Fig. 5. Verification results of convolutional neural networks (CNNs) architecture for the seven oak 
species classification using the barks in test phase 
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Table 5. Correlation of the Factors Influencing Convolutional Neural Networks 

N = 600 Epochs 
Loss 

(Train) 
Accuracy 

(Train) 
Loss 
(Test) 

Accuracy 
(Test) 

Optimizer Augmentation 

(SGD) (Adam) (RMS Prop) (No) (Yes) 

Epochs 
1 −0.525** 0.530** −0.031 0.493** 0.000 0.000 0.000 0.000 0.000 

 p = 0.000 p = 0.000 p = 0.443 p = 0.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000 

Loss 
(Train) 

−0.525** 1 −0.998** 0.110** −0.854** 0.218** −0.208** −0.011 0.624** −0.624** 

p = 0.000  p = 0.000 p = 0.007 p = 0.000 p = 0.000 p = 0.000 p = 0.791 p = 0.000 p = 0.000 

Accuracy 
(Train) 

0.530** −0.998** 1 −0.121** 0.864** −0.212** 0.196** 0.015 −0.614** 0.614** 

p = 0.000 p = 0.000  p = 0.003 p = 0.000 p = 0.000 p = 0.000 p = 0.706 p = 0.000 p = 0.000 

Loss 
(Test) 

−0.031 0.110** −0.121** 1 −0.458** −0.167** 0.428** −0.260** −0.189** 0.189** 

p = 0.443 p = 0.007 p = 0.003  p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 

Accuracy 
(Test) 

0.493** −0.854** 0.864** −0.457** 1 −0.118** −0.076 0.194** −0.456** 0.456** 

p = 0.000 p = 0.000 p = 0.000 p = 0.000  p = 0.004 p = 0.063 p = 0.000 p = 0.000 p = 0.000 

Optimizer 
(SGD) 

0.000 0.218** −0.212** −0.167** −0.118** 1 −0.500** −0.500** 0.000 0.000 

p = 1.000 p = 0.000 p = 0.000 p = 0.000 p = 0.004  p = 0.000 p = 0.000 p = 1.000 p = 1.000 

Optimizer 
(Adam) 

0.000 −0.208** 0.196** 0.428** −0.076 −0.500** 1 −0.500** 0.000 0.000 

p = 1.000 p = 0.000 p = 0.000 p = 0.000 p = 0.063 p = 0.000  p = 0.000 p = 1.000 p = 1.000 

Optimizer 
(RMSProp) 

0.000 −0.011 0.015 −0.260** 0.194** −0.500** −0.500** 1 0.000 0.000 

p = 1.000 p = 0.791 p = 0.706 p = 0.000 p = 0.000 p = 0.000 p = 0.000  p = 1.000 p = 1.000 

Augmentation 
(No) 

0.000 0.624** −0.614** −0.189** −0.456** 0.000 0.000 0.000 1 −1.000** 

p = 1.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 1.000 p = 1.000 p = 1.000  p = 0.000 

Augmentation 
(Yes) 

0.000 −0.624** 0.614** 0.189** 0.456** 0.000 0.000 0.000 −1.000** 1 

p = 1.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 1.000 p = 1.000 p = 1.000 p = 0.000  
**The correlation is significant at the 0.01 level (2-tailed). 

 

Table 6. Homogeneous Subset Output of the Basic CNN Model 

Process Output SGD Adam RMSProp 

Non-aug. Augmented Non-aug. Augmented Non-aug. Augmented 

Training  
Loss 1.106d 0.142a 0.519b 0.059a 0.772c 0.115a 

Accuracy 0.559a 0.946d 0.790c 0.979d 0.691b 0.961d 

Test  
Loss 1.099c 0.708a 0.908b 2.128d 0.807ab 0.807ab 

Accuracy 0.583a 0.818d 0.678b 0.744c 0.687b 0.871e 

Note: The same superscript lowercase letters beside the mean values in the same row denote non-significant outcomes at the 5% significance level 
for comparisons between species. 
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During the test phase, when the augmented dataset was applied during the training 

process, the SGD and RMSProp optimizer conditions reached a stable state after 15 to 20 

epochs without overfitting. In contrast, the non-augmented dataset took approximately 40 

to 50 epochs for the optimizer conditions to reach a stable state. The results obtained in this 

study are in line with previous results from the authors (Kim et al. 2023), which 

demonstrated that the utilization of an augmented dataset resulted in a more rapid 

stabilization of loss and classification accuracy compared to the non−augmented dataset. 

Rapid stabilization can also be ascribed to the advantages of using data augmentation, 

which includes mitigating the occurrence of overfitting and enhancing the classification 

accuracy (Wong et al. 2016; Fujita and Takahara 2017; Shorten and Khoshgoftaar 2019). 

However, it should be noted that there are possibilities of noise influences, as observed in 

the Adam optimizer. 

Table 5 presents the correlation between the conditions applied to the training and 

testing of the CNN. In the training phase, the loss decreased as the number of epochs 

increased; however, no clear relationship was observed during the test phase. However, in 

both the training and test phases, the accuracy showed a proportional increase with the 

increasing number of epochs. Notably, in both the training and test phases, the accuracy 

displayed a negative trend with the epochs when SGD was used. However, the accuracy 

increased with the application of RMSProp and Adam during the training and test phases. 

During the test phase, data augmentation improved the performance in terms of both loss 

and accuracy. In contrast, it tended to increase both loss and the accuracy, during the 

training phase. Accordingly, the results showed that the number of epochs and optimizer 

selection affected the classification accuracy.  

Table 6 presents the results of verifying the homogeneous subsets for each 

validation condition during CNN training. During the training phase, the augmented dataset 

was classified into the same subset for loss and accuracy regardless of the type of optimizer 

used. During the testing phase, the augmented dataset was classified into the same subset 

of losses only when SGD and RMSProp were used. The non-augmented dataset revealed 

independent subsets for all validation conditions during the training phase. Only the loss 

and accuracy from the non-augmented Adam and RMSProp methods were classified into 

the same subset during the test phase. 

 
 
CONCLUSIONS 
 

1. The bark of the seven oak species exhibited distinct variations in the size, shape, and 

frequency of sclereids.  

2. The classification accuracy of species based on the bark was significantly improved 

when using data augmentation (0.456**) and the RMSProp optimizer (0.194**). The 

loss reduction was pronounced when using RMSProp (−0.260**), data augmentation 

(-0.189**), and SGD (−0.167**). Consequently, the augmented dataset with the 

RMSProp optimizer exhibited optimal performance, reaching 89.8%. 

3. Homogeneous subsets using the augmented dataset among the validation conditions 

were classified into the same subsets for accuracy and loss during the training phase, 

regardless of the optimizer used. Only the conditions with the Adam and RMSProp 

optimizers for the non-augmented dataset were classified into the same subsets for 

accuracy and loss during the testing phase. 
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4. In conclusion, CNNs used for species classification using sclereid characteristics in the 

bark of seven oak species showed classification accuracies ranging between 74% and 

90%. Sclereid characteristics are expected to serve as useful indicators for facilitating 

species classification. Especially, the relatively simple preprocessing and inspection 

procedures in the trade and quarantine procedures of commercial cork resources from 

Quercus suber and Quercus variabilis are expected. 
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