
 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Liu et al. (2024). “NIR lignin model transfer coupling,” BioResources 19(1), 245-256.  245 

 

Near-infrared Lignin Model Transfer: A Study Based on 
SWCSS-CARS Coupling Algorithm 
 
Zhijian Liu, Honghong Wang, Zhixin Xiong,* Yunchao Hu, Haoran Huang,  

Ying Wang, Xianzhi Wu, and Long Liang 
 

In NIR spectral modeling, the method of screening wavelengths with 
consistent stable signals (SWCSS) is based on a standard-free algorithm. 
However, the wavelengths selected by SWCSS may contain invalid 
information. In this paper, the Competitive Adaptive Reweighted Sampling 
(CARS) wavelength optimization algorithm was used in conjunction with 
SWCSS to eliminate the uninformative variables in the wavelengths 
selected by SWCSS. The SWCSS-CARS method was based on three 
near-infrared spectrometers (Lengguang 1, Lengguang 2, and Lengguang 
3), with Lengguang 1 as the master and the other two instruments as the 
targets, using a total of 84 sample spectra of five types of pulpwood and 
their lignin contents as the research objects. Compared with the full 
spectrum, the number of wavelengths was reduced from 1601 to 24 in the 
model built using the coupling algorithm. For target 1, the value of RPD 
was improved from 1.9247 to 3.1880; for target 2, t the value of RPD was 
improved from 1.7415 to 3.2508. The wavelengths selected by the 
SWCSS-CARS coupling algorithm were able to build stable, robust 
models. 
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INTRODUCTION  
 

Wood used for pulp should have a high cellulose and low lignin content (Liang et 

al. 2020). The lignin content determines the amount of bleach, so the rapid detection of 

lignin in the control of the pulp production process is important. Near-infrared 

spectroscopy (NIR) analysis technology has the advantages of being fast, nondestructive, 

and green, and the method has been widely used in the fields of food (Castro et al. 2023), 

medicine (Yin et al. 2019) and agriculture (Cortés et al. 2019). In most cases, it is time-

consuming and expensive to build a good multivariate calibration model, so it is desirable 

for a model to be stable and valid for a long time. However, changes in measurement 

conditions, aging or replacement of instrument components, and changes from external 

environments and samples may affect the accuracy and applicability of the calibration 

model. Model transfer, on the other hand, can adapt the calibrated model to a new 

instrument (target) or testing conditions through various chemometrics methods. Although 

the transferred model is usually not as accurate as the original model applied in the master 

machine, its accuracy usually still meets the requirements of the application and saves a lot 

of time and cost required for modifying the instrument or rebuilding the model (Dardenne 

2002).  



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Liu et al. (2024). “NIR lignin model transfer coupling,” BioResources 19(1), 245-256.  246 

Currently, model transfer research is mostly focused on improving and developing 

new algorithms to realize model transfer sharing between different models of NIR 

spectrometers, which often requires a large number of samples to ensure the reliability of 

the model transfer, and this method is called scaled sample model transfer. In order to solve 

the problem of requiring a large number of samples for the traditional model transfer 

method with labeled samples, model transfer using the SWCSS method is a new strategy 

worthy of study (Ni et al. 2018; Zhang et al. 2020; Wang et al. 2022), whose transfer 

process is relatively simple and only requires the selection of very few representative 

samples for screening the consistent wavelengths, which makes the model transfer easier 

to realize. However, the wavelengths selected by the current SWCSS method for 

consistency between different spectroscopic instruments may contain no information as 

well as wavelengths with very little information, which leads to poor SWCSS-PLSR model 

transfer performance. If the invalid wavelength variables in the SWCSS results can be 

eliminated with other preferred algorithms, and then the PLSR model constructed with the 

remaining wavelengths can be transferred, it will have stronger robustness and prediction 

accuracy compared with the model built by the original SWCSS method. It has been shown 

that the use of CARS and Uninformative Variables Elimination (UVE) (Cai et al. 2008) as 

well as Successive Projections Algorithm (SPA) (Soares et al. 2013) algorithms are able 

to effectively remove the unimportant wavelengths from the spectrum. Therefore, based 

on the previous studies, this paper continues to explore the transfer results of the SWCSS-

CARS method between three different batches of prismatic near-infrared spectrometers 

and compares them with the results of analyzing the target samples by the separate SWCSS, 

UVE, CARS, and SPA algorithms, to validate the feasibility of the concatenation of the 

SWCSS-CARS algorithms. 

 
 
EXPERIMENTAL 
 
Analysis of Samples and their Lignin Content 

Five common woods (Pinus massoniana, Cunninghamia lanceolata, Acacia, 

Eucalyptus robusta, and Populus) were provided by the Institute of Forestry and Chemical 

Industry of the Chinese Academy of Forestry, totaling 84 log samples. The logs were 

chipped into wood chips and ground, and then the wood powder samples with particle size 

of 0.250 to 0.425 mm (40 to 60 mesh) were selected to determine the acid-insoluble lignin 

content according to GB/T 2677.8-1994. The statistical characteristics of the results are 

shown in Table 1. 

 

Table 1. Statistical Table of Lignin Content in Pulpwood  

Types of Wood Flour Number Min (%) Max (%) Mean (%) 

Eucalyptus robusta 24 21.49 27.56 23.74 

Cunninghamia  23 32.55 34.20 33.44 

Populus 15 14.82 20.51 18.00 

Acacia 12 24.62 27.15 25.69 

Pinus massoniana 10 28.48 28.95 28.63 

Total 84 14.82 34.20 26.43 
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Near-infrared Spectral Acquisition 

The experiment uses three near-infrared spectrometers (three Lengguang S450 

raster scanning near-infrared spectrometer of the same type), one of which is located in 

Zhenjiang users of the Lengguang S450 as the master, the other two are located in Shanghai 

users of the Lengguang S450 as targets (Target 1 and Target 2). The instrument is a grating 

scanning near-infrared spectrometer with an indium gallium arsenide (InGaAs) detector, 

wavelength range of 900 to 2500 nm, resolution of 12 nm, sampling interval of 1 nm, and 

total of 1601 wavelength points. The spectral data of 84 wood flour samples were collected 

on these three instruments respectively. Since the S450 near-infrared spectrometer is 

equipped with a rotary stage, the step of repeated sample loading can be omitted. The 

measurement of each sample was repeated 6 times, and the average spectrum was taken as 

the final sample spectrum. The Kennard-Stone method was used to divide the 84 specimens 

into 56 correction set and 28 prediction set specimens. 

 
Wavelength Selection Method 
Screening wavelengths with consistent and stable signals (Ni et al. 2019) 

The standard deviation of the two spectra was calculated and analyzed using the 

spectral response of the samples at each wavelength as a variable to find out the 

wavelengths at which the spectral signals of different instruments are consistent and stable. 

The Standard Deviation of Precision Detection Spectra (SDPDS) is the standard 

deviation of the sample spectra taken on several consecutive occasions on the main 

instrument. It is calculated as follows. 

  (1) 

where Xij is the spectral signal at the jth wavelength of the sample under test at the ith 

acquisition, and n is the number of acquisitions. 𝑋̅j is the average of the spectral signals at 

the jth wavelength. SDPDS describes the level of fluctuation in the spectra of the repeated 

tests. The fluctuation of the spectrum is caused by noise and measurement error of the 

instrument in a very short period of time. The smaller the SDPDS is, the more stable the 

spectral signal is at this wavelength. 

The Standard Deviation of Difference Spectra Between the Instruments (SDDSI) 

reflects the range of fluctuations in the difference spectra of the master and target. It is 

calculated as follows, 

  (2) 

where m is the number of samples, while Aij denotes the difference spectrum between the 

spectra of the master and the target (Aij=Mij-Sij), and Mij and Sij denote the spectral response 

values of the ith sample of the master and the target, respectively, measured at the 

wavelength point j. The smaller the SDDSIj is, the better the consistency of the spectral 

signal of the instrument at the jth wavelength. 

Screening for stable and consistent wavelengths: The K-S algorithm is used to 

select a certain number of representative samples, calculate the standard deviation of the 

difference spectra between the master and target of these samples at wavelength j, SDDSIj, 

and the standard deviation of the precision test spectra of the master, SDPDSj, and define 

the ratio of SDDSIj and SDPDSj as the consistency parameter, 
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  (3) 

where n is the number of wavelengths. Usually, SDDSIj is larger than SDPDSj. The closer 

bj is to 1, the smaller is the standard deviation of the difference spectrum between the 

master and target instruments. The goal is to match the standard deviation of the master 

instrument’s accuracy test, so the signals of the master and the target instruments have a 

very good consistency at that wavelength.  

Based on previous experiments, when bj is set smaller, the selected wavelengths 

will be very few, and much important information will be lost. However, when bj is too 

large, wavelengths with large spectral differences between instruments will be included. 

NIR models that include information about these wavelengths have poor analytical 

performance for target samples. Therefore, a reasonable bj needs to be selected based on 

the analytical effectiveness of the model built from the selected wavelengths on the target 

samples. After the wavelengths with large SDPDS values are excluded from the selected 

wavelengths, the set of wavelengths for which the spectral signals are consistent between 

the master instrument and each of the target instruments is recorded as U1,..., UK. The 

intersection of these sets is Uc. 

 

Competitive Adaptive Reweighted Sampling algorithm  

Using the Competitive Adaptive Reweighted Sampling (CARS) algorithm (Jiang 

et al. 2015), based on the Monte Carlo resampling method, a fixed proportion of samples 

were randomly selected from the sample set as the correction set, and the importance of 

each variable was evaluated by the absolute value of the regression coefficients of the 

established PLS model. In each resampling, adaptive reweighted sampling was used to 

select the important spectral variables with larger absolute regression coefficients in the 

calibration model, and an exponential decreasing function was used to determine the 

number of variables to be selected. Finally, the cross-validation method was applied to 

select the optimal subset of variables where the root-mean-square error allowed. 

 
Modeling and Model Evaluation Methods 

The Partial Least Square Regression (PLSR) algorithm was used to establish the 

NIR correction model for lignin content. The size of the number of principal factors in the 

modeling process directly affects the effectiveness of the model. Choosing too small a 

number of principal factors will result in the loss of many important inter-spectral 

information, while choosing too large a number of principal factors introduces more 

redundancy into the model information, leading to overfitting (Son et al. 2020). In this 

study, the maximum number of principal factors was set to 15 and the minimum number 

of principal factors was set to 2 during the modeling process. The PLS component with the 

smallest sum of squared prediction errors (PRESS) was selected using the leave-one-out 

method for cross-valid 

Model building, model prediction, and the effect of prediction after model delivery 

are evaluated, and the methods of evaluating the constructed models in this study used the 

Correlation Coefficient (R) (Wang et al. 2019), Determination Coefficient (R2) (Morellos 

et al. 2016), and Root Mean Squared Error for Cross Validation (RMSCV) (Morellos et al. 

2016). In addition, the Root Mean Squared Error for Prediction (RMSEP) and Ratio of 

Prediction to Deviation (RPD) were used (Rossel et al. 2006). Among them, the closer R 

and R2 are to 1, the higher the RPD is, the lower the RMSE is, the better the model is. 
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RPD<2.5 indicates a poor model, the value of RPD is from 2.5 to 3.0 the model is fair, and 

RPD>3.0 the model is good. Since R2 is associated with RPD, which represents a more 

straightforward measurement of the ability of an NIRS model to predict a constituent, in 

our following study the RPD was employed as an evaluation index. 

The AIC is defined as (Rossel et al. 2010), 

 ln 2ICA n RMSEP p= +
        

(4) 

where n is the number of samples and p is the number of characteristics of the samples, 

i.e., the number of variables modeled. The smaller the AIC value, the more streamlined the 

model. 

 
Software 

Spectral data preprocessing, division of correction/prediction sets, and PLS 

modeling and prediction were performed using NIRSA software developed in-house by the 

laboratory. In the test analysis, NIRSA provided similar results to the UnscramblerTM 

software (Xiong et al. 2016). The SWCSS algorithm as well as wavelength selection 

algorithms such as CARS were run using MATLAB 2016 software. 

 
 
RESULTS AND DISCUSSION 
 
Stable Consistent Wavelength Screening Based on Lignin 

Using the standardized preprocessing method combined with the SWCSS method 

to screen wavelengths with consistent and stable spectral signals between master and target 

spectrometers, the number of selected wavelengths and wavelength points were the same, 

regardless of how many samples were taken to screen the wavelengths. Therefore, five 

representative samples were selected for use in the SWCSS algorithm to screen for 

consistent wavelengths (denoted as U1 and U2) between the master and target 1 and target 

2 spectrometers, respectively. The wavelength sets U1 and U2 were utilized to model the 

host and predict the variation of RMSEP with b-value for the prediction set samples of 

target 1 and target 2, respectively (Fig. 1).  

The RMSEP values of the target samples analyzed using the master models built 

by U1 and U2 when the b value is too small were 8.8832 and 4.4979, respectively, which 

is a poor prediction. This indicates that the number of consistent wavelengths selected for 

the consistency parameter b=1 was too small, which will lose many important information 

that is beneficial to the modeling, resulting in that the transfer performance of the 

calibration model built by the SWCSS method will be poor. Therefore, during the 

experiment, U1 and U2 were screened by setting b to take 1 to 10. Both U1 and U2 used 

the minimum value of RMSEP predicted by the PLSR model of the host of lignin indicators 

for the 2 target samples as the criterion for selecting the appropriate b value, and the 

standard deviation was calculated between the master and the targets 1 and 2, SDDSI1 and 

SDDSI2. Taking the intersection of U1 and U2 yields the intersection set of Uc, containing 

465 wavelength points. The consistent wavelength set Uc screened by the SWCSS method 

is shown in Fig. 2. 
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Fig. 1. The change of RMSEP with b value of two targets samples analyzed by U1 and U2 modeling 
 

The lignin-based consistency wavelength points Uc selected using the SWCSS 

method are mainly located in the regions where the standard deviations SDDSI1 and 

SDDSI2 between the master and the 2 targets are small, and in the regions where the 

differences are large such as 900, 903 to 1412, 1572, 1577 to 1583, 1586 to 1593, 1611, 

1614 to 1619 , 1627 to 1748, 1750 to 1942, 1974, 1976 to 1977, 1981 to 1984, 2007 to 

2008, 2010, 2115 to 2116, 2130 to 2135, 2139, and 2189 to 2500 nm, then none of them 

can be screened by SWCSS algorithm. 

 
Fig. 2. The position distribution of the consistent wavelength set Uc selected based on the SWCSS 
method 

 
Stable Consistent Wavelength Screening Based on Lignin 

The spectral wavelength selection of SWCSS is only for wavelength points with 

little inter-instrumental difference, and its screening results may contain wavelengths with 

no or little information, which may adversely affect the calibration model, so this 

necessitates wavelength band optimization of the Uc wavelength set to obtain a more 

reliable calibration model. Based on the Uc wavelength set, the CARS algorithm is used to 

optimize the Uc wavelength set to obtain a new set of wavelengths containing 24 

0 2 4 6 8 10
0

2

4

6

8

10

R
M

S
E

P

b value

 Target 1

 Target 2

900 1100 1300 1500 1700 1900 2100 2300 2500

0.1

0.2

0.3

0.4

0.5

0.6

A
b

s
o

rb
a
n

c
e

Wavelength(nm)

 SDDSI1

 SDDSI2

 SWCSS



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Liu et al. (2024). “NIR lignin model transfer coupling,” BioResources 19(1), 245-256.  251 

wavelength points, which accounts for 1.50% of the number of full-spectrum variables, as 

shown in Fig. 3. For comparison, the lignin-based wavelength sets selected by the full-

spectrum-based SPA, UVE, and CARS algorithms (containing 19, 1260, and 34 

wavelength points, accounting for 1.19%, 78.70%, and 2.12% of the number of full-

spectrum variables, respectively) are shown in Fig. 3. 

 

 
Fig. 3. The position distribution of the new wavelength group obtained by wavelength optimization 
of Uc and full spectrum 

 
Lignin Model Transfer Results and Analysis 

The master PLSR models were built based on SWCSS and UVE, CARS, and SPA 

algorithms alone or in combination, and the appropriate number of latent variables (LV) 

was selected by cross-validation using the leave-one-out method. The results are shown in 

Table 2.  

 
Table 2. Master Models Built at Different Wavelength Sets and their Analytical 
Results for Master Samples  

Method LV 
Correction set Prediction set 

R RPD RMSECV R RPD RMSEP 

Full 
Spectrum 

9 0.9858 5.9468 0.8050 0.9843 5.6438 0.9426 

SWCSS 7 0.9686 3.8169 1.2541 0.9637 3.4229 1.3985 

UVE 10 0.9815 5.0194 0.9537 0.9801 5.0252 1.0587 

CARS 6 0.9866 6.1199 0.8689 0.9738 4.3058 1.1118 

SPA 9 0.9896 6.9338 0.7671 0.9882 6.1605 0.7770 

SWCSS-
CARS 

5 0.9709 4.1703 1.2757 0.9641 3.6066 1.3273 

 

1000 1200 1400 1600 1800 2000 2200 2400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

b
s

o
rb

a
n

c
e

Wavelength(nm)

 Master Original Spectrum 

 SWCSS (421)

 CARS (34)

 SPA(19)

 UVE(1260)

 SWCSS-CARS (24)



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Liu et al. (2024). “NIR lignin model transfer coupling,” BioResources 19(1), 245-256.  252 

 
Fig. 4. The correlation between the measured value and the predicted value of the model 
established by different wavelength sets for the analysis of the master sample 
 

The distribution of predicted and measured lignin values for the target samples 

analyzed by the eight host calibration models in Table 2 is shown in Fig. 4. The prediction 

results of these host correction models for target samples exceeded 3.0, indicating that the 

host models constructed on the basis of the above different wavelength selection methods 

can meet the needs of practical applications. 

The 28 prediction set samples from the 2 targets were analyzed separately using the 

models in Table 2, and the results are shown in Table 3. When the 2 target sample sets 

were directly substituted into the host model for prediction without model transfer, the 

RMSEP of the prediction set increased from the original 0.9426 to 2.4872 and 2.7488, and 

the prediction results exhibited a large deviation, which indicates that the target samples 

cannot be directly applied to the host model, and it is necessary to carry out model transfer 

for the target samples. After model transfer using different wavelength selection methods, 

the prediction accuracies of the established models for the target samples were different, 

among which the SWCSS-CARS method exhibited the highest accuracy and stability, and 

the transfer efficiency was significantly improved. After model transfer with the SWCSS-

CARS method, the RMSEP of the two targets decreased to 1.5016 and 1.4726, 

respectively, and the AIC value decreased from 3198.70 to 63.86. Those values are better 

than the prediction effectiveness and efficiency of the SWCSS method alone. This is due 

to the fact that the CARS method uses adaptive reweighted sampling (ARS) to select 

wavelengths, and the wavelength variable corresponding to the model with the smallest 

cross-validated root mean square error (RMSEP) is selected as the characteristic 

wavelength variable in PLSR modeling, which effectively eliminates the information 

content of the wavelengths selected by the single SWCSS method. Wavelengths with little 

or no information content and uninformative wavelength variables present in the 

wavelengths. Therefore, the wavelengths selected by the SWCSS-CARS method have 

better stability and transmission efficiency than the SWCSS method alone. 

Tables 2 and 3 show that the models built based on the wavelength sets screened 

by the full-spectrum UVE, CARS, and SPA algorithms had a somewhat improved ability 

to analyse the host samples, but a poorer ability to analyse the lignin content of the two 

target samples. This is due to the fact that none of the three methods mentioned above is 
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based on stable wavelength screening, and most of the selected wavelengths are located in 

the wavelength region with large inter-instrumental differences. This difference resulted in 

the poor analytical ability of the host PLSR model developed by the method to analyse the 

spectra of the target samples. 

 
Table 3. Model Transfer Results of Different Wavelength Selection Methods  

Method 
Wavelength 

Set 
AIC 

Target 1 Target 2 

R RPD RMSEP R RPD RMSEP 

Full 
Spectrum 

1601 3198.70 0.9650 1.9247 2.4872 0.9731 1.7415 2.7488 

SWCSS 421 860.78 0.9600 3.5631 1.4931 0.9596 3.1493 1.5200 

UVE 1260 2523.19 0.9523 1.4334 3.3396 0.9561 1.5341 3.1204 

CARS 34 73.93 0.9621 1.9276 2.4834 0.9710 2.5068 1.9096 

SPA 19 23.87 0.9490 0.9748 4.9107 0.9610 1.0622 4.5065 

SWCSS-
CARS 

24 63.86 0.9580 3.1880 1.5016 0.9597 3.2508 1.4726 

 

Figure 5 shows the correlation plots of the measured and predicted values of lignin 

content of the 2 targets before and after model transfer using different methods such as 

SWCSS and CARS algorithms independently and in conjunction, as well as their 

distributions. Before the transfer, the prediction error was large when the target samples 

were directly substituted into the master model. The separate UVE, CARS, and SPA 

algorithms were directly applied to the two target machine samples with poor prediction 

results and large vertical deviations. After applying the master lignin model constructed by 

SWCSS and SWCSS-CARS methods to the two target samples, the analytical errors were 

reduced. Among them, the SWCSS-CARS method analyzed the target 2 samples with the 

smallest deviation between the predicted values and the measured values, which also 

indicates that the model analyzed after the delivery of the SWCSS-CARS method is good. 
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Fig. 5. Correlation plots of measured and predicted lignin content in the prediction set and their 
distribution 

 

 
CONCLUSIONS 
 

1. With the “screening wavelengths with consistent stable signals – competitive adaptive 

reweighting sampling” (SWCSS-CARS) coupling method, the wavelength was 

reduced from 1601 to 24, which means that the number of variables used in the 

modeling process was greatly reduced. For target 1, the value of ratio of prediction to 

deviation (RPD) was increased from 1.9247 to 3.1880; for target 2, the value of RPD 

was improved from 1.7415 to 3.2508, while AIC decreased from 3198.70 to 63.86 for 

both. Comparative experiments show that the wavelengths selected using the SWCSS-

CARS method can provide a more robust and simple correction model for the 

prediction of lignin content. It can simplify the process of correction model transfer, 

which is convenient for application in practice.  

2. In addition, theoretically speaking, besides the CARS optimization algorithm, many 

wavelength selection methods can be used for the further optimization of the consistent 

wavelength set Uc, such as the Binary Dragonfly Algorithm (BDA), Genetic algorithm 

(GA), and Particle Swarm Optimization (PSO). For the dataset used in this study, not 

all wavelength selection methods combined with the SWCSS method give satisfactory 

results for the delivery of the calibration model.  

  

  
 

16 18 20 22 24 26 28 30 32 34 36
15

20

25

30

35

40

45

(a)

 Full Spectrum

 SWCSS

 UVE

 CARS

 SPA

 SWCSS-CARS

P
re

d
ic

te
d

 V
a
lu

e

Measured Value

Target 1

0 5 10 15 20 25 30
15

20

25

30

35

40

45
(b)

L
ig

n
in

 C
o

n
te

n
t

Sample Size

 Measured Value

 Full Spectrum

 SWCSS

 UVE

 CARS

 SPA

 SWCSS-CARS

Target 1

16 18 20 22 24 26 28 30 32 34 36
15

20

25

30

35

40

45
(c)

 Full Spectrum

 SWCSS

 UVE

 CARS

 SPA

 SWCSS-CARS

P
re

d
ic

te
d

 V
a
lu

e

Measured Value

Target 2

0 5 10 15 20 25 30
15

20

25

30

35

40

45
Target 2

L
ig

n
in

 C
o

n
te

n
t

Sample Size

 Measured Value

 Full Spectrum

 SWCSS

 UVE

 CARS

 SPA

 SWCSS-CARS

(d)

(a) (b) 

(c) (d) 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

  

Liu et al. (2024). “NIR lignin model transfer coupling,” BioResources 19(1), 245-256.  255 

3. At present, the method only realizes model transfer between the same type of NIR 

spectrometers produced by the same manufacturer, and model sharing between 

spectroscopic instruments with different wavelength intervals, different resolutions, 

and large differences in instrument structures requires further validation. 
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