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Pulp refining processes are most often complicated to describe using 
linear methodologies, and sometimes an artificial neural network (ANN) is 
a preferable alternative when assimilating non-linear operating data. In this 
study, an ANN is used to predict pulp properties, such as shives (wide), 
fiber length, and freeness. Both traditional process variables (external 
variables) and refining zone variables (internal variables) are necessary to 
include as model inputs. The estimation of shives (wide) results achieved 
an R2 (coefficient of determination) of 0.9 (0.7) for the training and 
(validation) sets. Corresponding measures for fiber length and freeness 
can be questioned using this methodology. It is shown that the maximum 
temperature in the flat zone can be modeled using the external variables 
motor load and production instead of the specific energy. This resulted in 
an R2 of approximately 0.9 for the training sets, while the R2 for the 
validation set did not reach an acceptable level – most likely due to 
inherent non-linearities in the process. Additional results showed that the 
consistency profile is difficult to estimate properly using an ANN. Instead, 
a model-driven sensor is preferred to be used. The main results from this 
study indicate that shives (wide) should be the prime candidate when 
introducing advanced pulp property control concepts.   
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INTRODUCTION 
 

Many systems in the pulp and paper industry can be classified as nonlinear. Some 

of them are possible to describe using first principle models (FPM). If the nonlinearities 

are weak, linear models based on gain scheduling can be derived as an alternative. In other 

situations, the complexity can be almost impossible to describe, which calls for the 

implementation of complementary modeling techniques. When producing chemi-thermo-

mechanical pulp (CTMP), this is certainly true, as the needed input-output variables can be 

unknown as well as non-linear, noisy, and imprecise (Karlström and Hill 2017a,b,c; 

Karlström et al. 2018a; Karlström and Hill 2018b; Sund et al. 2021).  

To approach the challenge, a hybrid concept of both model-driven and data-driven 

soft sensors is used in this paper. These two soft sensors are well described by Bohlin 

(2006) and Kadlec et al. (2008), and a short overview is given below of pulp refining 

processes. The traditional process variables are most often inputs to a model-driven sensor. 

Most often, the model-driven soft sensors are based on FPM, extended Kalman filter, and 

adaptive observers (Bastin and Dochain 1990; Chruy 1997; Jos de Assis and Filho 2000).  
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In refining processes, the physical models (FPM) are of special interest, as non-

linear states can be derived (Miles and May 1990, 1991; Harkonen et al. 1999, 2003; 

Huhtanen 2004; Eriksson 2005; Karlström et al. 2008; Eriksson 2009). However, such 

models are often not suitable for online applications. 

Through measuring the temperature profile inside the refining zone, Karlström and 

Eriksson (2014a) introduced a simplified entropy modeling concept to cope with 

defibration/ fibrillation in three-phase systems. This model allowed for online estimation 

of internal variables, such as consistency profile, backward and forward flowing steam (the 

direction of the steam is dependent on where to find the maximum temperature (Karlström 

and Eriksson 2014b, 2014c, 2014d)), shear forces between chips/pulp and refining 

segments, etc. Thereby, together with the traditional process variables (such as motor load, 

production (also called throughput), and dilution water feed rates (also called external 

variables)), the number of process variables expanded considerably, which also allowed 

for a broader use of data-driven soft sensors where for instance parametric black-box 

models have been used successfully in several processes (Ljung 1987; Principe et al. 2000; 

Wold et al. 2001; Jolliffe 2002). However, parametric models are often based on linear 

methodology, requiring updated routines of the model parameters to cover an entire process 

operation window that also changes over time (Berg and Karlström 2005; Eriksson 2005; 

Eriksson 2009; Karlström et al. 2015b, 2016a,b). This limits the use of such models 

(Karlström et al. 2022). Therefore, data-driven models based on artificial neural networks 

(ANN), with multiple layers of neurons, can be an alternative to handle inherent non-

linearities (Demuth and Beale 2004; Rajesh and Ray 2006).  

In this paper, the authors focused on ANN-models based on a gradient- or Jacobian-

based Levenberg-Marquardt method (LM) (Levenberg 1944; Marquardt 1963). This 

algorithm was used to solve non-linear least square problems. Other backpropagation 

methods can be used as well (Hagan and Menhaj 1994; Björck 1996; Hagan et al. 1996; 

Kermani et al. 2005; Bonnans et al. 2006), but LM has proven to be both robust and 

relatively fast, which is favorable when handling large industrial data sets of information. 

In this paper, the authors concentrated the analysis on the estimation of a) the 

maximum temperatures in the flat zone (FZ) and the conical zone (CD); b) consistencies 

out from FZ and CD; and c) the pulp properties shives (wide), fiber length, and freeness. It 

is worth mentioning that the measured shives can be wide or long, where the term “wide” 

refers to the thickness of the fibers. The term “long” refers to the length of the fibers on 

average. Here, the focus is on the measured shives (wide), as the fiber length is also being 

used as a measure. 

 

 
EXPERIMENTAL 
 

Materials and Methods 
This section covers an introduction to special process conditions in a full-scale 

CTMP production line followed by information about the ANN-structure used. Some of 

all possible model input candidates are thereafter penetrated in more detail. The output 

candidates will be temperatures and consistencies in the refining zones and pulp properties 

with specific criteria for the selected training and validation sets. 
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Fundamentals 
In this study, the production line consisted of an RGP82CD (with a capacity of 

about 36 T/h and a normal operation of 16 to 20 MW). Three small 6 MW refiners (RLP54) 

ran in parallel but the focus was the CD-refiner.  

The CD-refiner, consists of two serially linked refining zones called the flat zone 

(FZ) and the conical zone (CD), see Fig. 1. In each refining zone, refining segments were 

mounted on a stationary and a rotating disc. The chips were fed into the FZ refining zone 

and moved towards the periphery of the CD by centrifugal forces. 

 

 
 
Fig. 1. A schematic drawing of a CD refiner. The vertical FZ is directly linked to the CD via an 
expanding point. Distance between the stationary and rotating segments (plate gaps) is 
represented by ΔCD and ΔFZ. For clarification, the pulp is introduced from below in the figure, i.e. 
at the label “ΔFZ”. 

 

The segments in Fig. 1 have a specific pattern with several bars to defibrate chips 

and to fibrillate the pulp along the way from the centrum (Fig. 2a) to the periphery of the 

refiner (Fig. 2b).  

 

 
 

 
Fig. 2. Sensor arrays with eight temperature measurements each, mounted along the radius and 
between refining segments in a CD82-refiner, see Fig. 1. 

 

(a)             (b) 
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It is a real challenge to describe the final pulp quality (Ferritsius et al. 2018; 

Ferritsius 2021). As Fig. 2 shows, the temperature profiles were measured using sensor 

arrays mounted between two segments in each refining zone. Eight temperature sensors 

were used in each zone. Thereby, the temperature profile can be seen as an internal variable 

vector that is measured together with traditional process variables (external variables) such 

as production rate, dilution water flows, motor load, and distance between the refining 

segments.  

Through using the temperature profile, it is possible to get access to other important 

internal variables utilizing a non-linear physical model derived by Karlström and Eriksson 

(2014a,b,c,d). This model opens for fast dynamic follow-up (ranging from 0.5 to 1 s) of 

e.g., consistency profiles (Karlström and Hill 2017a,b,c). In Fig. 3, a snapshot of the 

consistency profile is given. It is essential to control the shape of the profile by 

manipulating the added dilution water to the refining zones. Thereby, the process inside 

the refining zones becomes observable and controllable, which is essential when 

controlling both the flat zone and the conical zone simultaneously (Karlström et al. 2018b). 

 
 

Fig. 3. Consistency profile for one sample. The outlet consistency in the blow-line (last sample) 
has been included. Note that the drastic change in the conical zone is a consequence of the 
position at which the dilution water is added. 
  

Other important profiles are related to the fiber shear force, steam balance, and the 

fiber residence time in FZ and CD, which affect the final pulp properties as well. However, 

the pulp properties are still a challenge to derive only by using physical models, which calls 

for additional efforts such as the use of empirical models (Karlström et al. 2022). 

The non-linear physical model, which can be classified as a model-driven soft 

sensor, is preferably combined with empirical models. These models are often classified as 

data-driven soft sensors according to the Grey-box terminology presented by Bohlin 

(2006), as shown in Fig. 4.  

The output data of interest in this article is,  

𝑌̂ = [𝑌̂internal, 𝑌̂𝑃𝑈𝐿𝑃]                                                                                                                        (1) 
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where the internal variables can be derived from the model-driven soft sensor, 𝑌̂internal = 𝑋̂ , 

while 𝑌̂𝑃𝑈𝐿𝑃 comes from the data-driven soft sensor (Karlström et al. 2022).  

 

 
 
Fig. 4. The concept includes a non-linear model based on first principles (model-driven soft 
sensor) and the data-driven soft sensor, which can be e.g. pulp and handsheet models. The idea 
is to use the outputs for control purposes in TCtrl: Temperature control, CCtrl: Consistency 
control, ECtrl: Specific energy control and QCtrl: Quality control. 
 

ANN Models  
In this paper, the MATLAB Neural Network Toolbox is referenced for basic 

information about the ANN concept. The overview is written by Demuth and Beale (2004) 

and describes how the ANN can be trained with a backpropagation algorithm based on the 

Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963). As such, the network 

has a good characteristic for solving non-linear multi-dimensional mapping problems, 

given consistent data and enough neurons in its hidden layer (Hagan and Menhaj 1994; 

Björck 1996; Kermani et al. 2005; Rajesh and Ray 2006).  

The hidden layers in the authors’ ANN were based on a hyperbolic tangent sigmoid 

transfer function. To prevent overfitting, five layers were used as an initial setting, although 

it is possible to expand the size dependent on the size of the input matrix. The hidden 

neurons for each layer was set to ten according to the MATLAB default setting. In this 

paper, the focus will not be on the ANN-methodology. Instead, the Levenberg-Marquardt 

algorithm is used for all cases as it is fast and robust when it comes to the non-linear least 

squares curve-fitting (Gavin 2020).  

 

Input Candidates to the Data-Driven Soft Sensor 
As indicated in Fig 4, the model-driven soft sensor provides several candidates 

that can be used as additional inputs to a data-driven soft sensor.  

Examples, such as temperature profiles (> 20 variables); consistency profiles (> 20 

variables); backward and forward flowing steam (>20 variables); water content profiles (> 

20 variables); forces on bars (> 20 variables); and defibration and thermodynamical work 

in each refining zone (> 4 variables), are just a few internal input candidates. In this paper, 

the internal variables were represented by the matrix 𝑋̂ in Fig. 4. For a more comprehensive 

overview of other possible candidates, see Karlström and Eriksson (2014a,b,c,d). Note that 
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the reason for using both consistency and steam as inputs is a consequence of the fact that 

there were both backward and forward flowing steam in the refining zone. 

It is also natural to combine such inputs with traditional external variables like 

specific energy, dilution water added to FZ and CD, as well as the distance between the 

segments (also called plate gaps), as visualized in Fig. 1.  

The external input candidates are quite reliable as measures and constitute the 

matrix Xext, which means that the complete set of independent variables used in the data-

driven soft sensor can be represented by Eq. 2: 

𝑋𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 = [𝑋𝑒𝑥𝑡 , 𝑋̂]                                                                                                                     (2) 

From a practical perspective, it is impossible to introduce all inputs from Xextended 

in the ANN modeling procedure. However, some candidates are more relevant than others 

(Karlström and Hill (2017a,b,c); Bengtsson et al. (2019, 2020, 2021)) see below:  

External variables (Xext) 

• Specific energy (SpE) or the split into motor load (Mload) and production (Prod); 

• Dilution water to FZ and CD (DilwFZ, DilwCD);  

• Distance between segments in FZ and CD (GapFZ, GapCD);  

• The amount of sawmill chips (Sawmill), which affect e.g., the inlet consistency to FZ. 

Internal variables (𝑋̂) 

• Backward flowing steam in FZ (primarily two selected close to the maximum 

temperature; Steam5, Steam8. The figures correspond to the position of the temperature 

measurements in Fig. 2 (counted from the bottom of the pictures);  

• Consistency out from FZ as well as the consistency near the periphery in CD, (CFZ, 

CCD); 

• Fiber residence time in FZ and CD (RFZ, RCD);  

• Temperature profile with a focus on maximum temperature in FZ and CD (TmaxFZ 

and TmaxCD) and periphery temperature in CD (TCDper).  

To handle outliers in the input/output data sets, pre-processing was performed to 

reject data from process stops and traditional process failures. This is handled by removing 

all measurements larger than 3 standard deviations from the mean. Other failures, like 

malfunctions in measurement devices, will be rejected as well. 

Another obstacle to handle is the fact that the internal and external variables as 

inputs can introduce (larger or smaller) process-related dependencies. To analyze such 

situations and detect multicollinearities the Variance Inflation Factors (VIF) are worth 

studying.  

𝑉𝐼𝐹𝑘 =
1

1 − 𝑅𝑘
2                                                                                                                                 (3) 

In Eq. 3, 𝑅𝑘
2 represents the coefficient of determination obtained by regressing the 

kth inputs on the remaining inputs, i.e., VIF quantifies how much the variance is inflated, 

(Karlström et al. 2022). At this stage, it is not known whether the dependencies are linear 

or non-linear but if a standalone model is considered, handling the collinearities is a good 

initiative to analyze input data in the modeling procedure. 

A VIFk = 1 means that there is no linear correlation between the kth input and the 

other remaining inputs. If VIFk > 4, a general rule is that further analysis should be 

performed, while VIFk > 10 indicates serious multicollinearities, which may call for further 

analysis and perhaps a modified set of inputs (Belsley et al. 1980). In general, if only 

external variables are used, then the collinearities are not severe, which will be shown 
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below. However, when using internal variables, the collinearities occur naturally, meaning 

that several aspects must be considered. For example, if the aim is to derive “standalone” 

estimators where the contribution from each independent variable is analyzed, the 

collinearities in Xextended become cumbersome for all data-driven soft sensors. In contrast, 

if the aim is to find a data-driven soft sensor that can use information from the model-

driven soft sensor, we can accept that the VIF between the internal variables can exceed 

the rule of thumb if the data-driven soft sensor is not used as a standalone estimator.  

This paper analyzes whether the external variables in Xext will do fine as model 

inputs or if additional information from the internal variables is needed when estimating 

the outputs 𝑌̂ in Eq. 1.  

 

Estimation of Internal Variables in Data-Driven Soft Sensors 
As declared above, some of the internal variables in Eq. 1, can be worth studying 

as output candidates as well. This is especially true if the aim is to develop simulation tools 

for pulp refining processes. 

A natural set of internal variables to study in more detail will include the maximum 

temperatures and the consistencies in FZ and CD. These variables are central when it comes 

to simulation tools as well as advanced control concepts (Karlström and Hill 2018b). In 

this paper, the following internal variables are of special interest: 

𝑌̂𝑖𝑛𝑡 = [𝑌̂𝑇𝑚𝑎𝑥𝐹𝑍, 𝑌̂𝐶𝐹𝑍, 𝑌̂𝑇𝑚𝑎𝑥𝐶𝐷, 𝑌̂𝐶𝐶𝐷]                                                                                        (4) 

To minimize the risk for input collinearities in the model, the focus here is placed 

on the external variables in Xext as inputs when estimating [𝑌̂𝑇𝑚𝑎𝑥 𝐹𝑍, 𝑌̂𝐶𝐹𝑍] , while Xextended in 

Eq. 2 can be needed when estimating [𝑌̂𝑇𝑚𝑎𝑥𝐶𝐷, 𝑌̂𝐶𝐶𝐷].  The latter statement will be discussed 

further below. 

Normally, the operators use the specific energy as a measure of how the 

defibration/fibrillation of the chips/fibers is performed. This is, however, a rather rough 

approach, as the specific energy is dependent on both the production and the motor load 

i.e., the force distribution related to the steam and fiber-to-bar interaction along the radius 

of the refining segments (Karlström and Eriksson 2014a,b,c,d). Therefore, there is 

motivation to analyze both specific energy as well as the split between motor load and 

production as model inputs when estimating internal variables in Eq. 4.  

 

Pulp Property Estimation in Data-Driven Soft Sensors  
As shown in Fig. 5, small data sets can be sampled before the latency chest, but 

such sampling procedures are difficult to perform on a regular basis as they are based on 

tedious laboratory-based measurement procedures. The pulp samples become a set of 

under-sampled variables, which must be expanded into an oversampled data set of 

traditional process variables (normally sampled with a fast-sampling rate) to obtain a 

common time frame (Karlström et al. 2016a,b). This undermines the possibility of 

obtaining enough data to cover the entire operating window over the segment lifetime.  

To obtain enough data for modeling purposes, large data sets spread over a long 

period must be available from measurement devices. For practical reasons it is common 

that such measurement devices are positioned after the latency chest, see Fig. 5.  

This paper focuses on the estimation of the commonly used pulp properties, 

𝑌̂𝑃𝑈𝐿𝑃 = [𝑌̂𝑆ℎ𝑖𝑣𝑒𝑠, 𝑌̂𝐹𝐿, 𝑌̂𝐹𝑟𝑒𝑒𝑛𝑒𝑠𝑠]                                                                                                    (5) 
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where the subscripts “Shives, FL, and Freeness” correspond to shives (wide), fiber length, 

and freeness. Here freeness is the total volume of water discharged from a side orifice of a 

specific configuration while the pulp suspension drains freely under gravity.  

 

 
 
Fig. 5. Schematic drawing of the sampling points for blow-line samples before the latency chest 
and the pulp property measurements after the latency chest 

 
Fig. 6. Measured and filtered pulp properties (a) shives (wide) and b) fiber length) according to a 
moving average filter based on a horizon of 4000 samples. The sampling rate was 6 s. 
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Karlström et al. (2015a,b, 2022) highlighted several obstacles to overcome when 

preparing data for modeling purposes. Some of them are related to the absence of relevant 

signals for long periods (sometimes longer than 3 h). Other complications are associated 

to the position of the device after the latency chest that introduces a long time constant (20 

min). They also indicated that sometimes mixing problems in the chest can be a problem. 

This makes it hard to guarantee that pulp property variations, caused by changes in the 

refining conditions, are possible to derive properly.  

Finally, it is worth mentioning that the pulp property measurement device often has 

a non-equidistant sampling rate with a varying interval of 15 to 20 min, which needs to be 

taken into consideration as well (Sund et al. 2021). 

In Fig. 6, two of the pulp properties in YPULP (see Fig. 4) are included, and it is 

obvious that the noisy signals must be properly analyzed before using them as outputs. 

Here, filtering of the signals is most likely required, which can be performed in many ways. 

In this paper, a moving average filter was used (a low pass FIR filter as seen in Fig. 6), to 

handle the noisy data. A set of filters [2500, 4000, 8000, 10000] were analyzed. However, 

the main analysis was performed using 4000 samples as a reference, which corresponds to 

a time horizon of about 7 h. 

 

Criteria for the Modeling Procedure 
As the Levenberg-Marquardt algorithm can end up finding a local minimum, which 

is not necessarily the global minimum, it was not expected to get one optimal model. 

Instead, 200 iterations were run and the best models fulfilling specific criteria were selected 

for training (train) and validation (val) sets. Thereby, an ensemble of models constituted 

the basis when selecting the best structure.  

The training of data was primarily performed based on 4200 h (70%) of the time 

series in Fig. 6, while the rest, 1800 h, was allocated to the validation of the models. 

Additional information concerning the potential input/output data can be found in 

Appendix A. 

To find a good combination of input candidates, the coefficient of determination 

was employed, as given as Eq. 6, 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̄)
2
     𝑖 = 1,… , 𝑛                                                                                         (6) 

where ∑(𝑦𝑖 − 𝑦̂𝑖)
2 represents the sum of the squared residuals from the regression, while 

∑(𝑦𝑖 − 𝑦̄)
2denotes the sum of the squared differences from the mean of the dependent 

variable for n observations (Draper and Smith 1998).  

It is expected for the data quality to be relatively unreliable; thus, the thresholds 

were set to: 

 
𝑅𝑡𝑟𝑎𝑖𝑛
2 > 0.7   &   𝑅𝑣𝑎𝑙

2 > 0.2    for 𝑌̂𝑖𝑛𝑡
𝑅𝑡𝑟𝑎𝑖𝑛
2 > 0.7   &   𝑅𝑣𝑎𝑙

2 > 0.5    for 𝑌̂𝑃𝑈𝐿𝑃
}                                                                                (7) 

The criteria for the validation sets were deliberately set to lower values compared 

with the training sets.  

When it comes to the estimation of the internal variables, the non-linearity effects 

in both temperature profile and the motor-driven soft sensor (which estimates CFZ and 

CCD) can be considerable. This motivates an R2 = 0.2 for the validation set, while a slightly 

higher value is expected (0.5) when analyzing the pulp properties.  
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Because the criteria in Eq. 7 was used as a first requirement to fulfill the thresholds, 

a selection procedure was introduced based on the weights of the obtained models in each 

ensemble i = 1,..,n to find a proper estimate. This was performed by using the obtained R2-

vector according to j = 1; the training set, j = 2; the validation set or j = 3; and the 

hypotenuse of the two, which is given as Eq. 8: 

𝛹𝑖𝑗 = 𝑅𝑖𝑗
2 /∑𝑅𝑖𝑗

2

𝑖

𝑌̂𝑗 =∑𝛹𝑖𝑗𝑌̂𝑖𝑗
𝑖 }

 
 

 
 

    𝑖 = 1,… , 𝑛  ;  𝑗 = 1,2,3                                                                         (8) 

 

 

RESULTS AND DISCUSSION 
 

 This section is divided in two subsections covering the results obtained when 

applying the approach described above to estimate the internal variables 𝑌̂𝑖𝑛𝑡  in Eq. 4 and 

the pulp properties 𝑌̂𝑃𝑈𝐿𝑃 in Eq. 5. Therefore, the set of independent input candidates 

interesting to use will differ from each other. Some of the most important input candidates 

are given as time series in Appendix A, to “assure visually” that the excitation levels in the 

inputs are large enough to contribute to the expected changes in the selected outputs.  

 

Estimation of Internal Variables in Data-Driven Soft Sensors 
When the internal variables in FZ are analyzed, the external variables will be in 

focus as inputs, while a mix of external and internal variables will be used when analyzing 

the internal variables in CD as well as the pulp properties. This is motivated from a 

causality perspective, as all internal variables in FZ are a consequence of the external 

variables, while both the external and the internal variables in FZ might affect the 

predictions in the CD-zone, but not vice versa.  

To analyze the internal variables in  𝑌̂𝑖𝑛𝑡 in Eq. 4, the goal is to find an appropriate 

combination of inputs. According to the combinations in Table 1, the inputs describing FZ, 

will be based on external variables such as specific energy, motor load, production, the 

dilution water added, and the amount of sawmill chips to the refiner. As can be seen in 

Table 1, it is obvious from a VIF-perspective that Case B through Case E provides good 

candidates to the input matrix Xext, while Case A has been included only to show the 

colinear effects. 

 

Table 1. Variance Inflated Factors for the Different Model Inputs  

Variance Inflation Factors 

External Variables 

Case SpE Mload Prod SawMill DilwFZ GapFZ 

A 37 49 54 1   

B 1   1   

C  2 2 1   

D  2 3 1 2  

E  2 3 1 2 1 

Notes: SpE = Specific energy; Mload = Motor load, Prod = Production, Sawmill = Percentage of 
sawmill chips to refiner, DilwFZ = dilution water to FZ, GapFZ = Distance between refining 
segments in FZ 
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The Maximum Temperature in FZ (TmaxFZ) 
As shown in Fig. 7, which shows the R2 for the validation data versus the R2 for the 

training data, the ANN cannot provide good models when using the input data from Case 

B. 

 

 
Fig. 7. Estimated R2 for TmaxFZ using the approach based on Case B in Table 1; Dashed lines: 
Black is required area and red is accepted according to Eq. 7 

 

If the motor load and the production (Case C) are used as inputs instead of the 

specific energy, much better fits are obtained, as shown in Fig. 8. It is also shown that a 

slightly better estimation will be obtained if the dilution water to FZ (Case D) is included 

as an input. However, the R2 value for the validation set was not increased, and the question 

is whether the response in time domain was short enough. 
 

 
Fig. 8. Estimated R2 for TmaxFZ using the approach based on a) Case C and b) Case D in Table 
1; Dashed lines represent the accepted criteria in Eq. 7 

 

Through studying the ensemble of models in the time domain, the major dynamics 

seem to have been covered, as shown in Fig. 9a. This is of course promising, and using the 

criterion j = 1 in Eq. 8, the response became even more pronounced (at this stage we are 
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not comparing all criteria in Eq. 8, this will be done later in the text), see Fig. 9b. Hence, 

when estimating TmaxFZ, the most important result so far is that the ANN provided the best 

estimates if the motor load and production were included as inputs, instead of using the 

specific energy as a model input.  

 
 

Fig. 9. Filtered and estimated TmaxFZ for Case D in Table 1: a: ensemble of models related to Fig. 
8; b: Response using the weighted training set (j = 1 in Eq. 8) 
 

To complete the discussion about possible input combinations from Table 1, Case 

E in Fig. 10 was also studied. As can be seen, the use of the inputs from Case E provided 

slightly better models when adding the distance between the segments as an input. This is 

good news and motivates a proposal to use a set up according to Case E as a reference 

when estimating the maximum temperature in FZ.  

To verify the robustness in the results in Fig. 10, another 200 iterations were also 

included to find complementary models (Set 2). As shown, the cluster of R2 will not be 

improved outside the original region. Instead, the ensemble is located almost in the same 

interval as the original set (Set 1). This indicates, to some extent, a robustness in the used 

methodology.  
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The R2 value from the validation set was, however, surprisingly low, and this 

undermines the use of the models derived although the time responses seem to be 

acceptable. 

  
 

Fig. 10. Estimated R2 for TmaxFZ using the approach based on two ensemble sets for Case E in 
Table 1 

 

The Consistency Modeling in FZ (CFZ)  
When it comes to the consistency modeling in the flat zone, none of the input 

combinations in Table 1 provided acceptable models. This could be perceived as a surprise, 

but the complex process conditions inside the refining zone are difficult to capture using 

only the external variables.  

As an example, neither the external variables cover phenomena, such as the split 

between backflowing and forward flowing steam, nor the variable distributed shear forces, 

where inherent physical conditions must be considered. Hence, although the input matrix 

was expanded by including the maximum temperature in FZ as well, a good estimation of 

the consistency was not obtained.  

 

The Maximum Temperature in CD (TmaxCD)  
Compared with the modeling of the maximum temperature in FZ (Case E in Table 

1), the models for the first temperature measurement in CD (see Fig. 1 (right figure)) need 

an even more complex input structure.  

It is natural to expand the input structure in Case E by introducing the dilution water 

feed rate together with the distance between the refining segment in CD, but this was not 

enough, as no models fulfilled the criteria in Eq. 7.  

Without going through all the details regarding different combinations and their 

inability to create good models, it can be concluded that the use of the maximum 

temperature in FZ as an additional input seems to be important to achieve acceptance 

according to the criteria in Eq. 7. This indicates that external variables as model inputs are 

not enough when estimating the maximum temperature in CD. This, of course, is a 

drawback from an empirical modeling perspective, as temperature measurements and most 

likely the model-driven soft sensor must be used when estimating internal variables in the 

conical zone.  
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Hence, when Case E in Table 1 is expanded by adding the dilution water and plate 

gap in CD together with the maximum temperature in FZ as inputs, a good estimate of 

TmaxCD can be provided, as shown in Fig. 11. This is a bit of a surprise, as the position 

for the maximum temperature in FZ is close to the periphery of the segment and thereby 

close to the maximum temperature in CD.  

However, the correlation coefficient between them was only 0.5. The covariation 

was thereby unexpectedly small, which can be seen by comparing Fig. 9 and Fig. 11 as 

well. 

 
Fig. 11. Filtered and estimated TmaxCD for Case E in Table 1 added with the dilution water 
feedrate to CD (DilwCD);  the plate gap in CD (GapCD); and the maximum temperature in FZ 
(TmaxFZ). Figure a) represents the ensemble models. Figure b) represents the weighted training 
set (j = 1 in Eq. 8). 
 

The Consistency Modeling in CD (CCD) 
When it comes to the consistency modeling in the conical zone, none of the input 

combinations mentioned above could be used, which indicates that strong process non-

linearities were present. 
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In summary, the maximum temperature in FZ can be estimated with quite good 

accuracy using external variables as inputs, whereas the model-driven soft sensor becomes 

vital when estimating other internal variables. 

 

Estimation of Pulp Property in Data-Driven Soft Sensors  
When it comes to the modeling of the pulp properties in 𝑌̂𝑃𝑈𝐿𝑃, we have access to 

all internal variables from the model-driven soft sensor as well as traditional external 

variables. That is, the entire palette of possible inputs to the ANN models.  

Here, the specific energy is used instead of the motor load and the production when 

estimating pulp properties. This is because pulp properties are dependent on all process 

conditions represented by both external and internal variables.  

Because we are not using the data-driven sensor as a standalone model in this case, 

a strict methodology regarding the VIF does not need to be followed. However, it is still 

interesting to see how the collinearities are reflected by the VIF in Table 2. 

 

Table 2. Variance Inflated Factors for the Different Model Inputs 

Variance Inflation Factors 
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1 11 7 8 40 194 127 65 143 139 12 2 10133 10318 1 

2 1 1 1 1 1          

3 6     42 15 97 122 7 2 79 62 1 

4 1 2 1 1 1         1 

5 2 2 1 1 1     2 1   1 

6 2 2 2 1 1  2   3 1   1 

7 2 2 1 1 1 2    3 1   1 

8 5 2 2 1 1  2   6 1 4  1 

SpE=Specific energy, Gap=Distance between refining segments in FZ and CD, CFZ and 
CCD=Consistency in FZ and CD, RFZ and RCD= Fiber residence time in FZ and CD, Steam5 
and Steam8=Backward flowing steam in 5th and 8th position in FZ, TmaxFZ= Maximum temperature 
in FZ, TCDper=Periphery temperature in CD. Sawmill=Percentage of sawmill chips to refiner 
 

Shives (Wide) 
When estimating shives (wide) using the inputs based on Case 1 in Table 2, the 

criteria for pulp properties in Eq. 7 will be fulfilled for some of the models, as shown in 

Fig. 12 a. It is also worth mentioning that the use of just external variables in Case 2 will 

not result in any acceptable models even though the specific energy is split into motor load 

and production as inputs.  

It is notable to observe that when adding the sawmill chip content as an input (Case 

4), one model represented by the green dot in Fig. 12a will meet the criteria in Eq. 7. 

Therefore, also in this case it is indicated that the sawmill chip content is vital to include 

as an input in all models. 

When reducing the model complexity of Case 1 in Fig. 12, it can be seen that Case 

5 through Case 7 seem to provide similar performance as the ensemble of models in Case 

1. A closer look at the plots in Fig. 12, shows that the best fits did not exceed an R2 > 0.88 

for the training sets. Through using the procedure described in Eq. 8, the cases can be 

further compared. As can be seen in Table 3, the training set of Case 1 outperformed Case 
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5 through Case 7, even though the number of models was smaller (15 against 24). This is, 

to some extent, expected, as Case 1 can handle more input combinations and thereby 

include more process non-linearities.  

 
Fig. 12. Estimated R2 for shives (wide). Figure a)– Case 1 (All input candidates included; Red 
accepted), Case 2 (External inputs only; No models accepted) and Case 4 (External inputs 
including the sawmill chips content- Green accepted). For the figure b) Case 5 through figure part 
c) Case 6 and part d) – Case 7, see Table 2 for corresponding input combinations. 
 

 

Table 3. R2 for the Training and the Validation Sets Based on a Normalized 
Weight on the Ensemble of Models from Case 1, and Case 5 Through Case 7  

Models based on the ensemble of Case 1 Models based on the ensemble of Case 6 

Weighted by; R2 train R2 validation Weighted by; R2 train R2 validation 

Train set 0.88 0.71 Train set 0.84 0.66 

Validation 
set 

0.87 0.73 Validation 
set 

0.83 0.68 

Length* 0.88 0.72 Length* 0.83 0.67 

Models based on the ensemble of Case 5 Models based on the ensemble of Case 7 

Weighted by; R2 train R2 validation Weighted by; R2 train R2 validation 

Train set 0.83 0.72 Train set 0.84 0.67 

Validation 
set 

0.82 0.75 Validation 
set 

0.83 0.68 

Length* 0.83 0.74 Length* 0.84 0.68 

*) Length of the hypotenuse, where training and validation ensembles are legs (R2 train and R2 
val.) of the triangle 

Note: See Eq. 8, Filter: Window size is 4000 samples 
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It is also noteworthy that an improvement in accuracy was not achieved, despite the 

fact that the size of the training set was increased from 70% to 90 % of the time series, as 

shown in Fig. 13. In contrast, the number of accepted models increased drastically from 15 

to 41 for Case 1 due to the smaller validation set.  

 
Fig. 13. Estimated R2 for shives (wide) for Case 1 in Table 2 when increasing the training set from 
70% to 90% of the time series. 

 

When it comes to the traditional way to interpret VIF, it is also worth mentioning 

that the large values of VIF for the fiber residence time in the refining zones (Case 1) 

seemed to have a limited impact on the robustness of the model responses in the ensembles, 

as shown in Fig. 14a.  

Which model to choose is hard to decide on beforehand, but if the procedure in Eq. 

8 is applied to the training set, a quite good response in shives (wide) is obtained, as shown 

in Fig. 14b. Because of the noisy signal from the pulp measurement unit, the selection of a 

proper filter is also important. This is shown in Table 4, where R2 could be further improved 

by increasing the window size of the moving average filters. However, it is always difficult 

to analyze proper signal to noise ratios in industrial processes. Therefore, the window size 

sometimes needs individual modification if other pulp properties are also studied. 

The final check was to see whether the accuracy could be improved if the number 

of hidden layers was increased. As shown in Fig. 15, the R2 for the training set was slightly 

increased, while the increase in the validation set was almost negligible. Hence, an 

increased size of the hidden layer will not necessarily improve the final result, as shown in 

Table 5.  
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Fig. 14. Filtered and estimated shives (wide) for Case 1 in Table 2. a) Responses from an ensemble 
of the training models fulfilling the criteria in Eq. 7. b) Response using the weighted training set 
based on the obtained ensemble (j = 1 in Eq. 8) 

 

 

Table 4. R2 for the Training and the Validation Sets Based on a Normalized 
Weight on the Ensemble of Models from Case 1 for Different Window Sizes 

The Ensemble of Case 1 – Filter 2500 The Ensemble of Case 1 – Filter 8000 

Weighted by; R2 train R2 validation Weighted by; R2 train R2 validation 

Train set 0.81 0.63 Train set 0.94 0.72 

Validation 
set 

0.77 0.66 Validation 
set 

0.93 0.76 

Length* 0.80 0.66 Length* 0.94 0.74 

The Ensemble of Case 1 – Filter 4000 The Ensemble of Case 1 – Filter 10000 

Weighted by; R2 train R2 validation Weighted by; R2 train R2 validation 

Train set 0.88 0.71 Train set 0.95 0.74 

Validation 
set 

0.87 0.73 Validation 
set 

0.93 0.79 

Length* 0.88 0.72 Length* 0.94 0.78 

*) Length of the hypotenuse, where training and validation ensembles are legs (R2 train and R2 
val.) of the triangle 
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Fig. 15. Estimated R2 for shives (wide) with two different sets of hidden layers using Case 1 in 
Table 2. 

 

Table 5. R2 for Training and Validation Sets Based on a Normalized Weight on 
the Ensemble of Models 

Hidden 
Layers 

Based on Max R2 in 
Training Set 

Based on Max R2 in 
Validation Set 

Based on Max R2 in 
Weighted Set 

R2 - 
Training 

R2 - 
Validation 

R2 - 
Training 

R2 - 
Validation 

R2 -
Training 

R2 - 
Validation 

2 0.78 0.61 0.77 0.60 0.78 0.62 

3 0.85 0.62 0.83 0.67 0.85 0.64 

4 0.87 0.69 0.85 0.71 0.87 0.71 

5 0.88 0.71 0.87 0.73 0.88 0.72 

6 0.90 0.73 0.90 0.74 0.90 0.75 

7 0.90 0.73 0.89 0.76 0.90 0.73 

8 0.90 0.70 0.89 0.72 0.90 0.71 

9 0.90 0.76 0.89 0.78 0.90 0.78 

10 0.90 0.78 0.89 0.75 0.90 0.74 

Note: See Eq. 8 for details; Case 1 is utilized as an example where different sizes of the hidden 
layers have been applied. 

 

Fiber Length 
It was not possible to reach the threshold for R𝑣𝑎𝑙

2  in Eq. 7, although the window 

size of the filter was increased. Therefore, the threshold for the validation set was reduced 

to 0.2. A few models were obtained that can be analyzed further, as shown in Fig. 16.  

An observation worth noting in Fig. 17 is that the response was quite good, although 

the threshold for the validation set was not reached. This statement is subject to questions, 

and future studies will show how to proceed. 
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Fig. 16. Estimated R2 for fiber length using Case 1 in Table 2 

 
Fig. 17. Filtered (4000 samples) and estimated fiber length for Case 1 in Table 2. a) Responses 
from an ensemble of the training models. b) Response using the weighted training set in Eq. 8 
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Freeness 
Finally, when it comes to the estimation of freeness, it can only be concluded that 

this measure is not reliable to use as the values of R2 (both training and validation sets) 

were almost zero. This is a similar result to earlier works based on an ARX-modeling 

procedure (Karlström et al. 2022). 

 

 

CONCLUSIONS 
 

This study investigated how a parametric model structure based on an ANN (using 

a Levenberg-Marquardt optimization algorithm) can be applied when modeling the 

maximum temperatures and consistencies inside the refining zones as well as the pulp 

properties: shives (wide), fiber length, and freeness. 
 

1. When estimating a pulp property, it is concluded that both external and internal 

variables (derived from the model-driven soft sensor) must be used as model inputs 

to handle the non-linearities in the process.  

2. A deeper analysis of the pulp property shives (wide) showed that the full model 

represented by Case 1 in Table 2 will suffice as a prime ANN-model structure. With 

an R2 of 0.9 (0.7) for the training (validation) sets, this is certainly a candidate when 

implementing future advanced control concepts.  

3. When predicting the pulp property fiber length, it is necessary to modify the 

thresholds for the validation set. As a good fit of the pulp property shives (wide) was 

reached, a model overfit is not expected. The backlash, related to the poor results 

based on the validation set, is of course a drawback. Some improvements can be 

achieved by introducing another window size of the filter, but a closer look at the 

response in the time domain provides a reasonably good prediction that might raise 

some questions about the selected threshold criteria used in this paper.  

4. It is also concluded that freeness is not possible to estimate. This has been argued in 

many articles during the last decade, and the findings in this paper confirm many 

such statements over the years. 
 

5. When it comes to the estimation of process conditions such as the maximum 

temperature in the flat zone (FZ) reliable models, based on the training set, can be 

obtained if the motor load and the production are used as external inputs to the model 

instead of the specific energy. The drawback, however, is that the R2 for the 

validation set was unacceptable small. This also highlights that the use of specific 

energy or the motor load and production alone did not give enough information about 

physical conditions inside the refining zones. This has been stated in previous work 

and can be a consequence of overfitting. It was also shown that some model 

improvements can be achieved if a) the sawmill chip content, b) the dilution water to 

FZ, and c) distance between refining segments in FZ are added as external inputs.  

6. From the results it can also be concluded that the consistencies in FZ and the CD 

should not be estimated using an ANN. Instead, a model-driven soft sensor is 

preferable to use. The same situation arises when estimating the maximum 

temperature in CD. Most likely, this is a consequence of strong non-linearities in the 

refining process, making it impossible to capture without using the internal variables. 



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Karlström et al. (2024). “Soft sensors in refining,” BioResources 19(1), 1030-1057.  1051 

This might lead to a paradigm shift regarding the need to measure inside the refining 

zones to get more information about different internal variables to control. 

7. Finally, to understand the control concept, it is important to control the CD-refiner 

using the temperature profile and certainly the maximum temperature, which can be 

controlled by manipulating the production. At the same time, the consistencies out 

from each refining zone must be controlled by manipulating the dilution water added 

to each zone. When it comes to the use of the estimated pulp properties, it is clear 

from the results in this article that shives (wide) can be controlled by manipulation 

the consistencies. Presently this is done in a full-scale production line in Sweden. 
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APPENDIX A 
 

In Fig. A1, the inputs for Case D in Table 1 are given for the entire unfiltered time 

series. As seen, the changes in the process values seem to be large enough for modeling 

purposes. An interesting observation in Fig. A2, however, is that the plate gaps in FZ and 

CD are noisy and not profoundly changed during the entire time series. In Fig. A3, some 

additional internal variables, obtained from the model-driven sensor, are given. 

 
Fig. A1. Unfiltered time series for the ANN-inputs represented by Case D in Table 1 
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Fig. A2. Additional unfiltered ANN-inputs used when estimating the pulp properties 
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Fig. A3. Additional unfiltered internal variables used as inputs when estimating the pulp 
properties 

 


