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Herein, the challenge of accurately classifying the manufacturing origin of 
printing paper, including continent, country, and specific product, was 
addressed. One-dimensional convolutional neural network (1D CNN) 
models trained on infrared (IR) spectrum data acquired from printing paper 
samples were used for the task. The preprocessing of the IR spectra 
through a second-derivative transformation and the restriction of the 
spectral range to 1800 to 1200 cm-1 improved the classification 
performance of the model. The outcomes were highly promising. Models 
trained on second-derivative IR spectra in the 1800 to 1200-cm-1 range 
exhibited perfect classification for the manufacturing continent and country, 
with an impressive F1 score of 0.980 for product classification. Notably, 
the developed 1D CNN model outperformed traditional machine learning 
classifiers, such as support vector machines and feed-forward neural 
networks. In addition, the application of data point attribution enhanced the 
transparency of the decision-making process of the model, offering 
insights into the spectral patterns that affect classification. This study 
makes a considerable contribution to printing paper classification, with 
potential implications for accurate origin identification in various fields. 
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INTRODUCTION 
 

The rapid advancement of modern technology has been expected to considerably 

reduce paper consumption in many fields owing to increasing digitalization. However, in 

reality, the consumption of paper has been increasing owing to various complex factors 

such as the need for document backup, security concerns, packaging, technological 

disparities, and user preferences (Shah et al. 2023). The development of printing and output 

technologies further highlights the significance of paper. Printing technology has 

revolutionized document creation, image reproduction, and data storage, considerably 

affecting business, education, and research domains. The quality and characteristics of 
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printing paper are crucial components of these technologies, and fine analysis and 

distinction of these properties represent one of the vital challenges in this context. 

Identifying the origin of paper products is essential for supporting global efforts to 

combat the illegal trade in timber products and promote sustainability (Australian 

Government 2012; Korea Legislation Research Institute 2020; Federal Register 2021; 

European Commission 2023). Furthermore, ensuring optimal printing quality for a 

particular printing device may require the identification of paper products that are suitable 

or unsuitable for the device. Paper origin identification is an advanced technology that 

offers practical value and innovations in various fields, including the prevention of 

document forgery and the development of new materials and manufacturing processes. 

The combination of spectroscopy and multivariate analysis has proven to be a 

promising approach in classification problems involving various materials (Soriano-Disla 

et al. 2014; Chang et al. 2015; Hwang et al. 2016; Horikawa et al. 2019; Hwang et al. 

2021). Infrared (IR) spectra are used to measure the IR emission of objects at specific 

wavelengths; these data can be used to discern the unique characteristics of paper (Stuart 

2004; Trafela et al. 2007; Causin et al. 2010). Recent advancements in machine learning 

have further improved the predictive performance of models, making them more accurate 

and robust (Coppola et al. 2023; Hwang et al. 2023). Machine learning algorithms have 

already been used to process spectral data and identify the distinctive signatures of different 

types of paper through pattern recognition and feature extraction (Meza Ramirez et al. 

2021). Recent research combines laser-induced breakdown spectroscopy (LIBS) and 

machine learning to achieve diverse goals. One aspect involves enhancing judicial 

expertise by analyzing ink marks in handwriting identification using LIBS and machine 

learning (Feng et al. 2023). Another facet addresses the misclassification of recyclable 

waste, employing LIBS and machine learning to create an effective online source tracing 

system (Chen et al. 2023). The system successfully identifies and categorizes smoke from 

waste paper incineration, demonstrating the possibility of tracing the source of waste paper. 

Herein, a one-dimensional convolutional neural network (1D CNN) model using 

IR spectra was developed to accurately classify the manufacturing origin of printing paper, 

including the continent, country, and product. This model processes the spectral data of 

printing paper, learning patterns and features from the data. Furthermore, data point 

attribution analysis was used to understand how specific absorption bands in the IR 

spectrum contribute to the classification decisions of the model. This process enhanced the 

transparency of the decision-making process of the model and improved its interpretability. 

This article presents the results of machine learning-based classification of the 

manufacturing origin of printing paper, contributing to the existing body of research in this 

field. 

 

 

EXPERIMENTAL 
 

Printing Papers 
Herein, 65 commercial products from 24 different manufacturers spanning 11 

countries were used for printing paper classification (Table 1). Each product was 

categorized based on its country of production rather than the manufacturer’s country of 

registration. The products in the sample exhibited considerable variation, with the majority 
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originating from China (28 products), whereas Finland was represented by only one 

product.  

The majority of the selected products were typical office printing papers with a 

weight range of 70 to 90 grams per square meter (gsm). Some products exceeded 100 gsm 

and were intended for special documents, promotional materials, business cards, and other 

similar applications. Among the 28 products, those of Chinese origin were A4 or A3-sized 

printing papers with a weight of 70 to 80 gsm, manufactured by 12 companies. Among the 

65 products tested, four were composed of recycled paper, whereas a unique product from 

the United States was produced from cotton. In addition, three original equipment 

manufacturer products with unverified manufacturer and country of origin information 

were included in the study. These items were incorporated into the analysis to predict their 

respective countries of origin. 

 

Table 1. Number of Papers Analyzed and Country of Manufacture 

No. Country Number of Analyzed Product 

1 China 28 

2 India 8 

3 Indonesia 2 

4 Korea 6 (2 recycled products included) 

5 Thailand 2 

6 Austria 3 

7 Finland 1 

8 Germany 2 (1 recycled product included) 

9 Canada 2 

10 USA 9 (1 recycled and 1 cotton paper products included) 

11 Brazil 2 

 

Dataset 
IR spectra 

The IR spectra of printing paper samples spanning the wavenumber range of 4000 

to 400 cm−1 were acquired using attenuated total reflection infrared (ATR-IR) spectroscopy 

(ALPHA-P, Bruker Optics, Ettlingen, Germany). The spectral resolution was set to 4 cm−1, 

and average spectra derived from 16 repeated scans were obtained. ATR-IR spectroscopy 

can analyze a wide range of samples, including liquids, solids, and powders. It requires 

minimal sample preparation, allowing for quick and direct analysis. For each printing paper 

product, the IR spectra from 5 samples were collected, resulting in a dataset comprising 

325 spectra for the classification model. 

 

Data preprocessing 

The IR spectra were preprocessed using a Savitzky–Golay filter (Savitzky and 

Golay 1964). The original spectra were transformed into second-derivative spectra using a 

third polynomial with 21-point smoothing. This preprocessing was used to consistently 

adjust the baseline of the spectra and amplify peaks, thus emphasizing differences between 

the spectra (Hwang et al. 2016). 

The IR spectra in the range of 4000 to 400 cm−1 comprise 2545 input variables, 

including zero-filled points. The IR spectra may contain information that is either noisy or 
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not useful for sample characterization. Excess input variables are a primary factor 

increasing the computational cost of the model. Therefore, herein, the IR data from two 

regions were used for model training: 4000 to 400 cm−1 (the entire range) and 1800 to 1200 

cm−1 (the selected range). The selected range is suitable for paper characterization (Kim 

and Eom 2016), and it corresponds to 425 input variables. 

Through data preprocessing and selection, four datasets were generated from the 

original IR spectra, including the entire range (Dataset A) and selected range (Dataset B) 

of the original IR spectra, as well as the entire range (Dataset C) and selected range (Dataset 

D) of the second-derivative spectra. These four datasets were then used to develop 

respective classification models through Euclidean (L2) norm-based vector normalization 

using Eq. 1. (Fig. 1), 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 =  
𝑣

√∑ |𝑣𝑖|2𝑛
𝑖 = 1

 (1) 

where v is the vector (IR spectrum) to be normalized, vi is ith element (data point) of vector 

v, and n is the number of vector elements. 

 

 
 

Fig. 1. Diagram for the classification of printing paper using 1D CNN 

 

Dataset splitting 

The datasets were split into training, validation, and test sets in a 3:1:1 ratio to build 

and evaluate the classification models. This ratio represented the minimum requirement for 

allocating data to each subset in product-level classification. The data were partitioned 

using stratified random sampling to maintain the specified split ratio for all classes. 

 

Principal Component Analysis (PCA) 
To analyze the IR spectral data of printing paper, PCA was conducted on four 

datasets. Through the PCA, the high-dimensional IR data were transformed into a new 

orthogonal coordinate system with six principal components (PCs). The transformed data 
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were subsequently visualized in a two-dimensional (2D) space to investigate the structure 

and patterns in the IR data for printing paper. 

 

1D CNN Classification Model 
1D CNN architecture 

The CNNs are fundamental for deep learning; they are predominantly used in image 

processing, where they excel in feature extraction from 2D data to facilitate image 

recognition and classification. Similarly, 1D CNNs, operated based on the same technical 

principles, are used to extract features from 1D data for predictive purposes. 

The architecture of the 1D CNN models tailored for the classification of printing 

paper in this study is illustrated in Fig. 2. The used 1D CNN networks comprise two 

convolutional layers and two fully connected layers, with each convolutional layer forming 

a module in conjunction with a max-pooling layer. These modules abstract and extract 

features from the input data, specifically from the IR spectrum, through data abstraction 

and down-sampling. Rectified linear unit (ReLU) was used as the activation function. The 

learned features from the convolutional modules are passed to a network composed of one 

flatten layer, two fully connected layers, and one softmax layer for training and performing 

prediction tasks using the input data. 

 

 

Fig. 2. Architecture of the 1D CNN model for printing paper classification. Numbers in 
parentheses indicate layer shapes. Notes: Conv, convolution layer; FC, fully connected layer 

 

The details of the hyperparameters tested and their application within the network 

for establishing the 1D CNN model are shown in Table 2. These hyperparameters were 

optimized through loop-based testing. Each 1D CNN model for printing paper 

classification was trained for 700 epochs using categorical crossentropy as the loss 

function. 

 

Evaluation metric 

Printing paper products are inequally distributed across manufacturing countries; 

thus, the evaluations of the classification performance of models using accuracy may be 

biased because of oversampled classes. Consequently, in this study, the weighted F1 score 

was used for assessing the classification performance of the 1D CNN models. The F1 score, 

which is the harmonic mean of precision (Eq. 2) and recall (Eq. 3), is a commonly used 

performance metric in classification problems with class imbalance; it is defined in Eq. 3. 
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 Precision =  
TP

TP + FP
 (2) 

 Recall =  
TP

TP + FN
 (3) 

where TP is the true positives, FP is the false positives, and FN is the false negatives. 

 F1𝑖  =  2 ×  
P𝑖  ×  R𝑖

P𝑖 + R𝑖
 (4) 

where F1i, Pi, and Ri are the F1 score, precision, and recall for class i, respectively. 

 

Table 2. Detailed Hyperparameters Used for Building the 1D CNN Model 

Hyperparameter Configuration 

• kernel_size = [3, 5, 7] 
• filters = [16, 32, 64] 
• pool_size = [2, 4] 
• dense_units = [128, 256] 

• dropout_rate = [0.5, 0.3] 
• learning_rate = [0.0001, 0.001, 0.01, 0.1] 
• optimizer = [SGD, Adam, RMSProp] 

Layer Layer Shape Hyperparameters 

Conv_1 (n_features, filters) kernel_size, filters 

Max_pool_1 (n_features / pool_size, filters) pool_size 

Conv_2 (n_features / pool_size, filters × 2) kernel_size, filters 

Max_pool_2 ((n_features / pool_size) / pool_size), filters × 2) pool_size 

Flatten ((n_features / pool_size) / pool_size) × (filters × 2) - 

Dense_1 dense_units dense_units 

Dropout_1 dense_unit dropout_rate 

Dense_2 dense_units / 2 dense_units / 2 

Dropout_2 dense_units / 2 dropout_rate 

Notes: kernel_size, the size of the convolutional kernel; filters: the number of filters applied in the 
convolutional layers; pool_size: the size of the pooling window in max pooling layers; dense_units: 
the number of nodes in the dense layers; dropout_rate: the rate at which dropout is applied in 
dropout layers; learning_rate: the learning rate used in the training; optimizer: the optimization 
algorithm chosen for training the model; SGD, stochastic gradient descent; Adam, adaptive 
moment estimation; RMSProp, root mean squared propagation; The values in square brackets 
represent the values of each hyperparameter used in building the model; Layer, the specific layer 
in the network architecture; Layer Shape, the shape or dimensions of the layer; Hyperparameters, 
the hyperparameters applied to each layer; Conv, convolution layer; Max_pool, maximum pooling 
layer; Dense, dense layer; n_features, the number of data points comprising the input data. 
 

The weighted F1 score used for the assessment of 1D CNN model performance 

takes into account class imbalances by calculating the weights for each class (Eq. 5) and 

incorporates them into their respective F1 scores (Eq. 6). Through this process, the 

weighted F1 score assesses individual classes and the overall model performance even for 

imbalanced datasets. 
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 𝑤𝑖 =
𝑁𝑖

𝑇𝑖
 (5) 

where wi is the weight of class i; Ni is the number of samples in class i; and Ti is the total 

number of samples. 

 Weighted F1𝑖  =  ∑ w𝑖

𝑁

𝑖 = 1
 ×  F1𝑖 (6) 

 

Data point attribution 

To assess the effect of individual data points within the given input IR data on the 

predictions of the 1D CNN models, the gradient-weighted activation mapping (Grad-

CAM) method was used for data point attribution. Data point attribution is a fundamental 

tool for interpreting model predictions by tracing back the output of the model. 

Data point attribution involves computing the gradient of the loss function to 

understand its sensitivity to each parameter and input data point. The gradient value 

indicates the extent to which a given data point affects the loss function, with a higher 

absolute gradient value signifying a substantial effect of that data point on the output of the 

model. The results of data point attribution were visualized alongside the IR spectra to 

quantitatively determine the importance of each data point and facilitate model 

interpretation. 

 

Prediction of unknown products 

Three products with unknown manufacturing information were used to predict their 

origins using the developed models. The PCA was performed on their IR spectra to analyze 

their relationships with existing data. Subsequently, they were input into the established 

1D CNN models to calculate the prediction probabilities for each class (Fig. 1). When 

inputting the unknown products into the 1D CNN model, the IR spectra were preprocessed 

in the same way as those used in model construction. 

 

Model Comparison 
The classification performance of the constructed 1D CNN models was compared 

with those of conventional machine learning classifiers: feed-forward neural network 

(FNN) and support vector machine (SVM). They were trained on the same four datasets 

used to establish the 1D CNN models, thus constructing their respective classification 

models. 

 

FNN 

The FNN with a backpropagation algorithm was used as a benchmark method for 

the 1D CNN. When constructing the models, ReLU was adopted as the activation function 

and crossentropy was used as the loss function. Stochastic gradient descent and adaptive 

moment estimation (Adam) were used to optimize the loss function. The initial learning 

rate ranged from 0.0001 to 0.1, with a maximum of 1000 iterations. The FNN architecture 

was configured with either one or two hidden layers, each containing 12, 256, or 512 nodes. 

A grid search was conducted to determine the optimal parameters and network structure 

for the FNN models. 
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SVM 

To facilitate performance comparison, SVM models were constructed using the 

radial basis function kernel (Vert et al. 2004), a technique that projects data into a high-

dimensional space to determine hyperplanes. During model construction, the parameter 

cost, responsible for regulating the misclassification cost of the training data, was set in the 

range of 100 to 105. In addition, the parameter Gamma, which governs the Gaussian kernel 

used for nonlinear classification, was configured within the range of 10−1 to 10−6. These 

parameters were optimized via a grid search. 

 

 

RESULTS AND DISCUSSION 
 

IR Spectral Characteristics of Printing Paper 
The IR spectrum contains valuable information for capturing and interpreting the 

characteristics of paper. Figure 3 presents the IR spectra of select samples from the four 

datasets. In the original IR spectra (Fig. 3a and 3b), distinct peaks at 3600 to 3000 cm−1 

were assigned to OH groups (Hofstetter et al. 2006), peaks at 2890 to 2780 cm−1 to CH 

stretching (Xiao et al. 2015), at 1647 to 1635 cm−1 to adsorbed water (Olsson and Salmén 

2004), at 1430 to 1416 cm−1 to the CH2 bending of crystalline cellulose (Schwanninger et 

al. 2004; Delmotte et al. 2008), and at 1200 to 900 cm−1 to the fingerprint peaks of cellulose 

(Garside and Wyeth 2003). 
 

 

Fig. 3. Entire IR spectra of printing paper samples and the selected region: original (a, b) and 
second-derivative data (c, d) 
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In the second-derivative spectra (Fig. 3c and 3d), peaks were amplified, 

accentuating the distinctions between spectra. Moreover, the 1600 to 1200 cm−1 region, 

where multiple peaks in the original spectra overlap, is distinctly separated through the 

second-derivative transformation (Fig. 3d). In the second-derivative spectra, several 

absorption bands, apart from those prominently present in the original spectra, are 

enhanced. These include bands assigned to carbonyl groups at 1740 cm−1 (Schwanninger 

et al. 2004), aromatic parts in lignin at 1510 cm−1 (Pandey and Pitman 2003) and 1244 

cm−1 (Delmotte et al. 2008), amorphous cellulose at 1466 to 1460 cm−1 (Hajji et al. 2016), 

and crystalline cellulose at 1315 cm−1 (Colom and Carrillo 2002). 
 

PCA 
PCA is a useful technique for extracting and analyzing patterns and structures in 

high-dimensional data. Figure 4 shows score plots depicting the first two PCs derived from 

the four IR datasets.  
 

 
 

Fig. 4. PC score plots for the first two PCs in the 4000–400 cm−1 (a) and 1800–1200 cm−1 (b) 
regions of the original IR spectra, and score plots in the 4000–400 cm−1 (c) and 1800–1200 cm −1 
(d) regions of second-derivative spectra 
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In all the score plots, data points from the majority of samples are mixed, forming 

a unified, large cluster, whereas some samples are grouped into smaller, distinct clusters. 

Notably, in contrast to other score plots (Fig. 4a, 4b, 4c), the smaller clusters are more 

prominently separated from the larger cluster in the score plots of second-derivative spectra 

in the 1800 to 1200 cm−1 region (Fig. 4d). These clusters correspond to products 

manufactured in Korea, Germany, China, and the United States, with each cluster 

comprising data points from the same product. Korean and German products have been 

identified as recycled paper. The second-derivative spectra of four products isolated from 

the large cluster in the PC score plot (Fig. 4d) and the loading values of the first two PCs 

are shown in Fig. 5. The absorbance bands at 1510 and 1595 cm−1 (Fig. 5b), assigned to 

the aromatic part of lignin, contributed to the positioning of Korean and German recycled 

products in the high-PC2 region of the score plot. They showed stronger peaks in those 

regions than in the control IR spectrum. These results suggest that unbleached pulp was 

possibly used in the manufacturing of the recycled products. The characteristics of the IR 

spectra and PC loading of the Chinese products, forming a distinct cluster, closely resemble 

those of the Korean and German recycled products. The isolated cluster of the United States 

products with high PC1 values exhibited a conspicuously strong peak at 1416 cm−1 (Fig. 

5a), which was assigned to the crystalline cellulose. Furthermore, the substantial negative 

value in the PC1 loading for this region indicated that it was a distinctive feature of these 

products. Variations in the crystallinity of cellulose in printing paper samples were 

attributed to differences in cooking methods and conditions (Gümüşkaya et al. 2003). 

However, given that the printing paper is kraft pulp based, factors other than cooking 

methods likely contributed to this effect because the use of recycled pulp in the 

manufacturing of this product cannot be discounted (Sheikhi et al. 2010). 
 
 

Fig. 5. Loadings for the first two PCs in the 1800 to 1200 cm−1 region of the second-derivative IR 
spectra. Numbers in parentheses indicate product number for printing paper samples. 



  

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Hwang et al. (2024). “NIR for paper classification,” BioResources 19(1), 1633-1651.  1643 
 

Classification of Printing Papers 
1D CNN models 

The 1D CNN models trained on the IR spectra were constructed for the 

classification of printing paper samples. The learning curves of the models for classifying 

the country of manufacturing shown in Fig. 6 demonstrate a smaller loss difference 

between the training and validation curves in the selected range of 1800 to 1200 cm−1 (Fig. 

6b), as opposed to the entire IR spectra (Fig. 6a). The variation between the training and 

validation curves can provide insights into model overfitting and generalization 

performance, with the smaller difference in the selected range suggesting that models 

trained on the IR data from this region are more likely to possess predictive capabilities for 

new data (Anzanello and Fogliatto 2011). 

 

 
 

Fig. 6. Learning curves of the 1D CNNs for the training on IR spectral data and model validation 

for the classification of the country of manufacturing for printing paper samples. Learning curve 
for the entire IR data from 4000 to 400 cm−1 (a) and learning curve for selected data in the 1800 
to 1200 cm−1 range (b) 

 

Figure 7 presents the F1 scores for the 1D CNN models trained on the IR spectral 

data for the classification of printing paper samples. The hyperparameters applied to each 

model, determined through loop-based optimization, are detailed in Table 3. In the 

classification of the continent of manufacturing, all models exhibited F1 scores exceeding 

0.967, confirming that printing paper samples share similar characteristics by continent. In 

the classification of the country of manufacturing, models trained on the IR data from the 

selected region of 1800 to 1200 cm−1 exhibited higher performance, with all classes 

perfectly classified regardless of spectral preprocessing. 

The classification performance of the 1D CNN models at the product level was 

lower than that at other classification levels. Models trained on the original and second-

derivative IR spectra encompassing the entire spectra (4000 to 400 cm−1) showed the F1 

scores of 0.788 and 0.818, respectively. These findings were attributed to the inherent 

challenges associated with product-level classification, which involves a considerable 

number of classes (65), where each class is represented by only 5 samples. This limitation 

prevented the models from adequately learning the distinctive features of each individual 

class. However, the use of spectral data from the selected region (1800 to 1200 cm−1), 

notably improved the F1 scores, which reached 0.939 and 0.980, respectively. These results 
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suggest that the selected spectral region is well-suited for the characterization of printing 

paper samples. 
 

Fig. 7. Weighted F1 scores of the 1D CNN models for the classification of printing paper 
manufacturing continents (a), countries (b), and products (c) 

 

Table 3. Performance of the 1D CNN Models in Printing Paper Classification and 
Their Optimal Hyperparameter Combinations 

CLS 
Level 

IR Spectrum F1 
Score 

Hyperparameters 

WN 
(cm−1) 

Preproc. Kernel 
Size 

Filter Pool 
Size 

Dense 
Units 

Dropout 
Rate 

Learning 
Rate 

Optimizer 

Continent 4000–
400 

Original 0.967 3 16 2 128 0.5 0.0001 RMSProp 

Second 
deriv. 

0.984 3 16 2 256 0.3 0.01 RMSProp 

1800–
1200 

Original 0.967 3 16 2 128 0.3 0.0001 RMSProp 

Second 
deriv. 

1.000 3 16 2 128 0.5 0.0001 Adam 

Country 4000–
400 

Original 0.970 7 32 4 128 0.3 0.0001 Adam 

Second 
deriv. 

0.984 5 16 4 256 0.3 0.0001 RMSProp 

1800–
1200 

Original 1.000 7 16 2 128 0.5 0.001 RMSProp 

Second 
deriv. 

1.000 3 16 2 128 0.5 0.0001 RMSProp 

Product 4000–
400 

Original 0.788 3 64 2 256 0.5 0.0001 Adam 

Second 
deriv. 

0.818 7 32 4 256 0.5 0.001 RMSProp 

1800–
1200 

Original 0.939 7 32 4 256 0.3 0.001 RMSProp 

Second 
deriv. 

0.980 5 64 4 256 0.5 0.0001 RMSProp 

Notes: CLS, classification; IR, infrared; WN, wavenumber; Preproc., preprocessing; Second deriv., 
second derivative; Adam, adaptive moment estimation; RMSProp, root mean squared propagation. 

 

In the classification across all tested levels, the application of the second derivative 

and narrowing of the spectral region improved the classification performance of the 1D 

CNN models. These preprocessing techniques, particularly the narrowing of the spectral 
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region, improved the performance of the models in various classification problems for 

materials such as paper and wood. The effectiveness of these preprocessing techniques was 

reaffirmed in this study. 

 

Misclassified class 

In the classification of the continent of manufacturing, some samples from Europe 

were incorrectly classified as originating from Asia or North America. Regarding country 

classification, models trained on the original IR spectra misclassified certain samples from 

Brazil and the United States as originating from Austria and Finland, respectively. In the 

case of the second-derivative spectra, one sample from Korea was misclassified as 

originating from China. In the score plots (Fig. 4), misclassified samples are positioned 

close to the samples of the countries to which they were erroneously assigned, suggesting 

their spectral similarities. 

 

Model Comparison 
The classification performance of the 1D CNN models for printing paper 

classification was compared with that of the FNN and SVM models (Table 4). Across all 

tested classification levels and datasets, the 1D CNN models outperformed the reference 

models. Among the studied models, the SVM models exhibited the lowest classification 

performance. Although the FNN models showed performance close to that of the 1D CNN 

models in the continent-level classification, as the classification level became more 

granular, the performance gap between the two model types widened. 

 

Table 4. Performance Comparison for the 1D CNN, FNN, and SVM Models in 
Printing Paper Classification 

Classification 
Level 

Wavenumber 
(cm−1) 

Preprocessing F1 Score 

1D CNN FNN SVM 

Continent 4000–400 Original 0.967 0.903 0.592 

Second derivative 0.984 0.923 0.592 

1800–1200 Original 0.967 0.949 0.934 

Second derivative 1.000 1.000 0.920 

Country 4000–400 Original 0.970 0.837 0.268 

Second derivative 0.984 0.872 0.268 

1800–1200 Original 1.000 0.910 0.917 

Second derivative 1.000 0.985 0.888 

Product 4000–400 Original 0.788 0.654 0.551 

Second derivative 0.818 0.616 0.507 

1800–1200 Original 0.939 0.813 0.788 

Second derivative 0.980 0.904 0.914 

1D CNN, one-dimensional convolutional neural network; FNN, feed-forward neural network; SVM, 
support vector machine. 
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The second-derivative transformation and spectral region selection of the IR data 

also contributed to improve the classification performance of the FNN and SVM models. 

However, for some SVM models, the application of second-derivative preprocessing 

decreased F1 scores. This indicates that the optimal preprocessing technique varies among 

the models. These findings confirm the superior classification performance of the 1D CNN 

model for printing paper classification. 

 

Prediction of Unknown Products 
The established 1D CNN model was used to predict the country of manufacturing 

for products with undisclosed origins. Table 5 presents the predicted probabilities for these 

unknown products, derived from the softmax classifier within the 1D CNN. The model 

assigned an 80% probability to product 1 of Korean origin and predicted that unknown 

products 2 and 3 were of Chinese origin with probabilities of 69% and 45%, respectively. 

 

Table 5. Predicted Probabilities for the Country-level Classification of Unknown 
Samples by the 1D CNN Model 

Product AUT BRA CAN CHN FIN GER IND IDN KOR THA USA 

Unknown 1 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.80 0.00 0.00 

Unknown 2 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.31 

Unknown 3 0.00 0.01 0.03 0.45 0.00 0.00 0.00 0.27 0.01 0.02 0.21 

Notes: AUT, Austria; BRA, Brazil; CAN, Canada; CHN, China; FIN, Finland; GER, Germany; IND, 
India; IDN, Indonesia; KOR, Korea; THA, Thailand; USA, United States; The 1D CNN model was 
trained with the second-derivative IR spectra in the 1800–1200 cm−1 region 

 

Figure 8 shows unknown products on the PC score plot with other products used in 

model construction.  

 

 

 

Fig. 8. PC score plot for two PCs in second-derivative IR spectra in the range of 4000 to 400 
cm−1 
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Unknown product 1, predicted to be of Korean origin, is positioned close to a 

specific Korean product on the score plot but forms an independent cluster. The presence 

of this cluster with a high PC2 value suggests the possibility that unbleached pulp may 

have been used in the manufacturing of this product. 

Unknown product 2, predicted to be of Chinese origin, was positioned in a large 

cluster among the points of many other Chinese products. Although unknown product 3 

was also predicted to be of Chinese origin, in the graph, it is close not only to Chinese 

products but also to products originating from the United States and India. Notably, the 

predicted probabilities for this product are relatively high for American and Indian origins, 

amounting to 21% and 27%, respectively (Table 6). Thus, the score plot provides 

interpretive support for the predictions generated by the 1D CNN model. 

 

Data Point Attribution 
Data point attributions were implemented using Grad-CAM from the 1D CNN 

models to analyze the differences in spectral regions contributing to the classification (Fig. 

9). Figure 9a shows the second-derivative IR spectra of paper products from the United 

States and Korea in the range of 1800 to 1200 cm−1, alongside their corresponding spectral 

point attributions.  

 

 

Fig. 9. Visualization of spectral point attribution for 1D CNN models trained with second-
derivative IR spectra in the range of 1800 to 1200 cm−1 for classification at the product (a), 
manufacturing continent (b), and manufacturing country (c) levels. Notes: Prod., printing paper 
products; AS, Asia; EU, Europe; NA, North America; SA, South America; AUT, Austria; BRA, 
Brazil; CAN, Canada; CHN, China; FIN, Finland; GER, Germany; IND, India; IDN, Indonesia; 
KOR, Korea; THA, Thailand; USA, United States 
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In the classification of the American product, notable contributions were identified 

at 1685 and 1558 cm−1, assigned to C=O stretching, and at 1430 to 1416 and 1315 cm−1, 

ascribed to crystalline cellulose. Conversely, in the classification of the Korean product, a 

substantial contribution was observed in the 1375 to 1466 cm−1 region, assigned to CH2 

bending in crystalline and amorphous cellulose. These results highlight the variation in the 

spectral contributions to the classification of each product. 

Figure 9b illustrates the spectral attribution for classification at the continent level, 

highlighting the variations in absorption bands contributing to classification across 

continents. For Asian products, relatively high contributions were observed in the broad 

region of 1500 to 1800 cm−1, assigned to C=O stretching. Regarding European products, a 

notable contribution was observed near 1277 cm−1, assigned to C–H deformation. Distinct 

regions were noted for North American products, with prominent color at 1740, 1685 to 

1660, and 1315 cm−1, assigned to C=O of carbonyl groups, C=O stretching, and crystalline 

cellulose, respectively. For South American products, high contributions are observed at 

1560 and 1466 cm−1, assigned to C=O and amorphous cellulose, respectively. 

In the case of classification at the country level, the contributions of key IR 

absorption bands for paper exhibit diverse patterns among different countries (Fig. 9c). 

Furthermore, the spectral attribution in country-based classification differs from that in the 

continent classification. These findings emphasize that the IR absorption bands 

contributing to classification vary depending on the classification level, and they 

demonstrate that the 1D CNN model has been established by learning comprehensive 

information from critical spectral regions. Thus, spectral attribution analysis enhanced 

interpretability for printing paper classification, providing a comprehensive understanding 

of the impact of IR data on the classification process of the 1D CNN models. 

 

 

CONCLUSIONS 
 

1. One-dimensional convolutional neural network (CNN) models trained on the infrared 

(IR) spectral data of printing paper samples exhibited high performance in classifying 

the origin of printing paper, including the continent, country, and product name. 

2. The preprocessing of the IR spectra through a second-derivative transformation 

improved the classification performance of 1D CNN models. In addition, narrowing 

the IR spectral data to the range of 1800 to 1200 cm−1 proved to be effective for 

enhancing the model performance. 

3. The model trained with the second-derivative IR spectra in the range of 1800 to 1200 

cm−1 achieved perfect classification for the continent and country of manufacturing, 

with an F1 score of 0.980 in product classification. The 1D CNN model outperformed 

the support vector machine (SVM) and feed-forward neural network (FNN) models 

trained on the same dataset. 

4. Spectral point attribution using gradient-weighted activation mapping (Grad-CAM) 

demonstrated that the pattern of IR absorbance bands contributing to the decisions of 

the 1D CNN model varies depending on the classification level and provided insight 

into the classification decisions of the 1D CNN model. 
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