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INTRODUCTION 
 

Facing the global carbon emissions caused by fossil energy consumption, people 

are increasingly concerned about the transformation of renewable biomass to generate 

energy or value-added products (Maki-Arvela et al. 2020). Among various products 

obtained from biomass, methyl lactate (MLA) is an important chemical that can be used as 

a valuable solvent with high boiling point (Koutinas et al. 2017), detergent (Weltman et al. 

1994), and synthetic raw material. For example, MLA can be polymerized to obtain 

polylactic acid (Kamble et al. 2012), hydrogenated to obtain propylene glycol (Simonov et 

al. 2012), and dehydrated to obtain acrylate (Pang et al. 2021). 

There are two available methods for preparing methyl lactate. One method involves 

the fermentation of biomass into lactic acid (Ma et al. 2022), which is then esterified with 

methanol. In this process, H2SO4 is commonly used as a catalyst. However, H2SO4 is prone 

to intramolecular and intermolecular dehydration and carbonization of lactic acid, resulting 

in low product yield and a large amount of industrial waste (Maki-Arvela et al. 2014). 

Furthermore, the fermentation production process also has drawbacks such as strict 

fermentation conditions (Tang et al. 2016), low efficiency, high cost, difficult separation 

(Ahmad et al. 2020; Oscar et al. 2022), and multiple process steps (Demichelis et al. 2017).  

The other method is the catalytic conversion of biomass sugars to methyl lactate 

(Yamaguchi et al. 2018; Zhao et al. 2021). The process of catalytic conversion of sugars to 

methyl lactate typically involves the hydrolysis of polysaccharides to produce fructose and 

glucose, which are isomerized into fructose (Lyu et al. 2019). Afterwards, fructose 

undergoes reverse aldol condensation to form a tricarbon compound, which is then 
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converted into methyl lactate through steps such as dehydration and hydrogen migration 

(Zhou et al. 2014; Lyu et al. 2019). 

Many Lewis acids and bases have been studied as catalysts for the synthesis of 

lactic acid and methyl lactate (Tolborg et al. 2015; Tosi et al. 2019; Yue et al. 2021). These 

catalysts have been further combined with molecular sieve materials to form heterogeneous 

catalysts (Peiyan et al. 2020; Jimenez-Martin et al. 2022). However, such catalysts also 

have disadvantages when included in complex synthesis processes, such as high cost and 

harsh catalytic conditions (Murillo et al. 2021; Li et al. 2021; Sun et al. 2021). There is 

relatively little systematic study on the reaction parameters in the catalytic process of 

methyl lactate. Therefore, the purpose of this study is to investigate the catalytic 

performance of Sn4+ ions on the conversion of glucose to MLA at various dosages and time 

periods, as well as mild temperature.  

 

 

EXPERIMENTAL 
  
Materials 

All reagents used in this study were analytical reagents (≥ 99%). Glucose was used 

as a model compound for biomass sugar in all experiments. As Lewis acid catalyst, 

SnCl4.5H2O purchased from Sinopharm Chemical Reagent Co., Ltd. (China) was used in 

this study. 

 
Methods 
Catalytic reaction procedure 

About 5 g of glucose was completely dissolved in 5 mL of distilled water, and then 

diluted with 495 mL of methanol to prepare a 1% (W/V) glucose solution as the reaction 

substrate. Then, a 100 mg/mL of SnCl4 solution prepared with methanol as the solvent was 

used as a catalyst additive. 

A 20 mL Teflon-lined stainless steel autoclave reactor was charged with glucose 

(10 mL), and catalyst solutions. After the autoclave was sealed, the reactor was heated to 

the desired temperature. When the reaction was complete, the reactor was cooled using a 

cold-water bath down to the ambient temperature. 

 

Catalytic parameter selection 

The gradient of catalyst dosage was studied using a molar ratio range of 0.025 to 

0.2 between catalyst and the reaction substrate, with an interval of 0.025. The reaction 

condition was 160 ℃, 3 h. 

To study the influence of temperature on catalytic performance, a range of 140 to 

190 ℃ was selected with an interval of 10 ℃. The reaction time was 3 h. 

To study the impact of time on catalytic performance, a range of 1 to 6 h was used, 

with an interval of 1 h and a maximum duration of 16 h. 

 

Product analysis 

The products formed in the reaction solution were filtered with a 0.22-μm filter and 

then identified using a GC-MS (6890NGC/5973, Agilent, Santa Clara, CA, USA) and a 

high-performance liquid chromatograph (HPLC; LPG-3400SD, DIONEX, Sunnyvale, CA, 

USA) analysis system. Conversion of glucose was analyzed with the external standard 

method on the HPLC equipped with an Aminex HPX-87H column (300 mm × 7.8 mm) 
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and a refractive index detector (RI-201H, Shimadzu, Kyoto, Japan). An aqueous H2SO4 

(0.005 M) solution was used as the mobile phase, with a flow rate of 0.6 mL/min (Lyu et 

al. 2018). The column temperature was 55 ℃. The yield of MLA was analyzed using the 

external standard method on the gas chromatograph-mass spectrometer (GC-MS) with DB-

WAX column (30 m× 0.25 mm). Helium was used as the carrier gas, with the flow rate of 

1 mL/min, an injection volume of 1.0 μL, a split ratio of 19:1, and an injection temperature 

of 280 °C. The initial temperature of the oven was 50 °C for 4 min, then ramped to 180 °C 

at 8 °C/min for 5 min, and finally ramped to 250 °C at 10 °C/min for 8 min. The MS system 

was operated at 230 °C, and the quadrupole temperature was set at 150 °C. Identification 

was performed using the NIST MS Search Program (Version 2.2) and the NIST/EPA/ NIH 

Mass Spectral Library (NIST 8.0).  

Glucose conversion and product yields were calculated using the following Eqs. 1 

and 2 (Lyu et al. 2019): 
 

Glucose conversion =  100 ×
Moles of glucose reacted

Moles of starting glucose
   (1) 

 

MLA yield = 100 ×  
Moles of C in produced MLA

Moles of C in glucose
    (2) 

All reactions were repeated at least twice, and the difference between the two 

results was less than 3%. 

 
 
RESULTS AND DISCUSSION 
 
Effect of Catalyst Dosages and Product Analysis 

After 3 h at 160 ℃, Fig. 1a shows that the yield of MLA increased with the increase 

of catalyst dosage, and the molar ratio of catalyst to glucose was within 0.1. Among them, 

the yield of MLA increased the fastest from a molar ratio of 0.025 to 0.05, with an increase 

of 447%. As the amount of catalyst further increased, the increase in the yield of MLA 

gradually decreased, ranging from 2.1% to 12.4%. The peak of MLA reached 3.94 mg/mL 

when the molar ratio of catalyst was 0.1. As the amount of catalyst continued to increase, 

the yield of MLA subsequently began to decrease. 

Figure 1b shows the conversion of glucose at 160 ℃ for 3 h under various molar 

ratios of catalyst dosage. As depicted in the figure, the glucose conversion rapidly increased 

from 83.5% to 96.8% when the molar ratio of catalyst dosage increased from 0.025 to 0.05. 

However, as the catalyst dosage continued to increase, the glucose conversion eventually 

stabilized. Figure 1c displays the conversion of glucose to MLA based on varying molar 

ratios of catalyst dosage. The graph indicates that the trend of MLA conversion rate was 

consistent with the variation in MLA content, with its peak occurring at a catalyst molar 

dosage of 0.10, resulting in an MLA yield of 34.8%. Hence, the subsequent experiment 

primarily aimed to examine the influence of temperature and time parameters on the yield 

of MLA, maintaining the catalyst molar ratio within the range of 0.075 to 0.125. 

Figure 2 displays the gas phase mass spectrometry of various catalyst dosages. At 

a molar ratio of 0.025, the two main components in the mass spectrometry were MLA and 

methyl 4-pentynoate, yet their peak areas in GC-MS were minor. As the dosage of catalyst 

increased, the contents of MLA and by-products initially increased and subsequently 

decreased, suggesting a rather complex catalytic conversion mechanism of glucose.  
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Fig. 1. The effect of different catalyst dosages on content of MLA (a), glucose conversion rate (b), 
yield of MLA (c) 

 

Based on mass spectrometry data, it was observed that the components, 

glycolaldehyde dimethyl acetate (GDA), 4-oxo-pentatonic acid methyl ester (PAM), 1,2-

dimethoxy-ethane (DE), 2-(2-furyl)-thiazolidine (FTH), and methyl 4-pentynoate (MPN), 

exhibited a similar trend to MLA. They first increased to the peak value and then decreased 

as the amount of catalyst increased. However, when it comes to individual components, 

the amount of catalyst required for the peak can be different. At a catalyst dosage of 0.05 
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molar ratio, glycolaldehyde dimethyl acetate and FTH reached their peak values, followed 

by a rapid decrease in glycolaldehyde dimethyl acetate. When the catalyst dosage was 0.1 

in molar ratio, the component signals cannot be detected. When the molar ratio of catalyst 

dosage was 0.175, FTH could not be detected. 

The variation trends of components DE and MPN were identical to those of MLA, 

suggesting that they may be co-products of glucose-catalyzed conversion to MLA. The 

peak area of component 4-oxo-pentatonic acid methyl ester in mass spectrometry continued 

to increase with the increase of catalyst dosage. When the content of glucose substrate 

remained constant, the composition content increased, whereas the content of MLA, DE, 

and MPN correspondingly decreased. Some speculate that there may be a polymerization 

pathway from MLA and other components to PAM under continuous high temperature and 

pressure conditions. There may be a possible pathway for MLA to be catalyzed by Lewis 

acid and Cl- under subcritical methanol conditions to undergo dehydration to prepare 

acrylate, which can undergo unsaturated C-C addition reaction with acetaldehyde to 

generate pentanoate components. An alternative pathway involves the initial conversion of 

glucose into xylitol, which subsequently undergoes dehydration and hydrogenation to yield 

pentanoate components. The exact pathway needs to be verified through further 

experiments. 

 

 
 

Fig. 2. Gas chromatography-mass spectrometry of different catalyst dosages at 160 °C for 3 h:  
1: Methyl lactate; 2: Glycolaldehyde dimethyl acetal (GDA); 3: 4-oxo-Pentatonic acid methyl ester 
(PAM); 4: 1,2-dimethoxy-Ethane (DE); 5: 2-(2-furyl)-Thiazolidine (FTH); and 6: Methyl 4-
pentynoate (MPN) 

 

Effect of Different Temperatures on the Conversion of MLA 
According to Fig. 3, at catalyst molar doses of 0.075 and 0.1, the yield of MLA 

increased with increasing temperature in the neighborhood of 180 ℃. In the temperature 
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range of 140 ℃ to 180 ℃, the linear regression equations for MLA were Y0.075 = 0.568 X 

- 43.169, (R² = 0.924) and Y0.1 = 0.568 X - 58.12, (R² = 0.976), respectively. Here, X 

represents the temperature parameter and Y represents the yield of MLA, indicating the 

significant role of temperature in affecting the conversion of glucose to MLA. However, 

when the temperature exceeded 180 ℃, the yield of MLA decreased. Furthermore, an 

excessively high temperature resulted in increased demands for temperature and pressure 

resistance of the reaction vessel, thereby diminishing the cost-effectiveness of this method. 

 

 
 

Fig. 3. The effect of different temperatures on the yield of MLA 
 

When the catalyst molar ratio was 0.125, an increase in temperature factor within 

the range of 140 to 170 ℃ was positively correlated with the yield of MLA. However, once 

the temperature exceeded 170 ℃, the MLA yield started to decrease. When the catalyst 

molar ratio was 0.1 and 0.075, the yield of MLA began to decrease when temperature 

exceeded 180 ℃, which applied to all monohydric alcohols. Methanol exhibited the highest 

polarity. The reaction in this system was conducted at elevated temperatures (140 to 190 

C), during which methanol was in a subcritical state. The polarity of C-O and O-H bonds 

in subcritical methanol intensified, thereby augmenting the apparent polarity and acidity of 

methanol. When using a large amount of Lewis acid catalyst, methanol more readily 

attacked MLA and generated various by-products, suggesting that at higher catalyst 

concentrations, both high temperature and high-pressure can lead to further conversion of 

MLA. Therefore, one cannot solely enhance the temperature parameters to obtain higher 

MLA yield. As shown in Fig. 4, in addition to the MLA component, other components also 

demonstrated additional attenuation and conversion at higher temperatures and catalyst 

dosages. Of all the components, PAM and DE were less affected by temperature, whereas 

MPN was the component most sensitive to temperature. Hence, an appropriate temperature 

parameter setting can be employed to decrease the content of by-products. 

 
Effect of Different Times on the Conversion of MLA 

In this section, a systematic study was conducted to examine the impact of time, 

catalyst concentration, and reaction temperature on the formation of MLA. As depicted in 

Figs. 5 to 7, the variation trend of the yield of MLA over time was not similar under 
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different catalyst dosages. When the catalyst molar ratio was 0.075, the yield of MLA 

reached its peak at 190 ℃ for 2 h and at 180 ℃ for 3 h, whereas it took 5 h to reach its 

peak at 140 to 170 ℃. Subsequently, the MLA yield began to decrease and eventually 

reached a balance. This suggests that MLA is not the ultimate stable product under Sn-

based catalysts, thus it is subject to further transformation over time. 
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Fig. 4. Gas chromatography-mass spectrometry at different temperatures with catalyst dosage of 
0.125 (molar ratio) at 3 h: 1: MLA; 2: GDA; 3: PAM; 4: DE; 5: FTH; and 6: MPN 
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Fig. 5. The effect of reaction time on the yield of MLA at different temperatures with catalyst 
dosage of 0.07 5 (molar ratio) 
 

 
 

Fig. 6. The effect of reaction time on the yield of MLA at different temperatures with catalyst 
dosage 0.1 (molar ratio) 
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Fig. 7. The effect of reaction time on the yield of MLA at different temperatures with catalyst 
dosage of 0.125 (molar ratio) 

 

As depicted in Fig. 6, when the catalyst molar ratio was 0.1, the trend of MLA yield 

at 180 to 190 °C was similar to that at a catalyst molar ratio of 0.075, but the peak value at 

180 °C was 10.76% higher than that at a catalyst dosage of 0.75, reaching 45.8%. It took 4 

h to reach its peak at 150 to 170 ℃, which was 1 h shorter than the catalyst molar ratio of 

0.075. At 140 ℃, it took 5 h to reach its peak. Based on Fig. 7, it can be observed that the 

molar ratio of catalyst was 0.125, and the impact of reaction time and temperature on the 

yield of MLA differed compared to the molar ratio of catalyst 0.075 and 0.1. At a molar 

ratio of 0.125, the peak value in all treatments was at 170 °C for 3 h, with an MLA yield 

of 40.8%. Based on the analysis of Figs 5 to 7, it can be seen that the higher the temperature 

under the same catalyst conditions, the faster the reaction rate. However, as the amount of 

catalyst increased, the temperature required for the maximum yield of MLA decreased, 

indicating that in subcritical methanol, the increase in methanol polarity greatly accelerated 

the conversion of glucose to MLA under Sn catalysis. Moreover, MLA became less stable 

in this system and further degraded into other by-products, suggesting that the yield of 

MLA from glucose conversion was governed by the interplay of catalyst dosage, time, and 

temperature. Therefore, it is necessary to systematically control the three factors of time, 

temperature, and catalyst dosage, so as to obtain high MLA yield and low by-products as 

soon as possible. 
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Fig. 8. Mass spectrometry peak area of the main by-products varies with reaction time at a 
catalyst dosage of 0.075 (molar ratio) at 190 °C for glucose.  
a: GDA; b: PAM; c: DE; d: FTH; and e: MPN 
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Fig. 9. Mass spectrometry peak area of the main by-products varies with reaction time at a 
catalyst dosage of 0.1 (molar ratio) at 190 °C for glucose.  
a: GDA; b: PAM; c: DE; d: FTH; and e: MPN 
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Fig. 10. Mass spectrometry peak area of the main by-products varies with reaction time at a 
catalyst dosage of 0.125 (molar ratio) at 190 °C for glucose.  
a: GDA; b: PAM; c: DE; d: FTH; and e: MPN 
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accelerated. Conversely, the trend of PAM in the system was opposite to that of GDA, 

indicating an increase in peak area of this component with extended reaction times. This 

finding corroborates the hypothesis that PAM is synthesized from GDA and acrylic esters 

esters from MLA, which can also account for the reduction of GDA and the elevation of 

PAM in the composition. 

The mass spectrum peak areas of components DE and MPN exhibited an initial 

increase, followed by a decrease with increasing reaction time when the catalyst mole ratio 

was 0.075. However, when the catalyst mole ratios were 0.1 and 0.125, the DE and MPN 

variation trend was similar to those of GDA, showing a negative correlation with time. 

This may be attributed to the fact that DE and MPN are intermediate substances in the 

subcritical catalytic conversion of glucose, whose component content is influenced by the 

conversion rate of their previous conversion products on one hand, and the rate of their 

further conversion into smaller molecules on the other. At the catalyst mole ratio of 0.075, 

the catalytic rate of the entire reaction system was lower than that of the catalysts with mole 

ratios of 0.1 and 0.125, resulting in a longer duration of glucose catalytic conversion into 

DE substances. In addition, the slow degradation rates of DE and MPN themselves will 

lead to an increase in the component contents of DE and MPN over a certain period of 

time. However, at high catalyst doses, DE and MPN completed all the conversion and 

accumulation within one hour, and they decreased over time due to their own degradation. 

At catalyst mole ratios of 0.075 and 0.1, the component FTH exhibited a trend of initial 

increase and subsequent decrease. Differences were observed a follows: at a ratio of 0.075, 

FTH reached its peak within 3 hours; at a ratio of 0.1, it took 2 hours. However, at a ratio 

of 0.125, all conversion accumulation was accomplished within 1 hour, resulting in a 

continuous downward trend in the graph. Therefore, by adjusting the time parameters, the 

yield of by-products can be reduced. 

When combined with the reaction time and temperature parameters, the results 

revealed that increasing the temperature within 180 ℃ not only accelerated the conversion 

of glucose to MLA, but it also boosted the yield of MLA. The adjustment of time parameter 

figures prominently in the catalytic conversion of glucose. The optimal duration of the 

reaction varies with the temperature and the quantity of catalyst. Considering the influence 

of temperature, time, and catalyst dosage on the yield of MLA, the optimal catalyst molar 

ratio was 0.075 to 0.1, the reaction temperature was 170 to 180 ℃, and the reaction time 

was 3 h. Under these conditions, the yield of MLA was maximized to 45.8%, and the 

overall process required relatively low equipment requirements. Compared to the catalytic 

conversion of glucose to lactic acid in aqueous phase, the target product MLA in this 

reaction can be easily separated from the by-products through distillation, and high-purity 

MLA can be obtained through molecular distillation. 

 

 

CONCLUSIONS 
 
1. Through comparative experiments with various catalyst doses, it was found that the 

effect of catalysts on the conversion of glucose to MLA was not linear. The appropriate 

dosage range was a molar ratio of catalyst to substrate between 0.075 to 0.10. 

2. Temperature is an important factor affecting the conversion of glucose MLA, but it is 

also coupled with the amount of catalyst used. Higher catalyst doses and temperatures 

may result in a reduction in MLA yield. At appropriate catalyst doses, higher 
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temperatures can increase the yield of MLA, but excessively high temperatures not 

only will result in dismal process economy, but it also will impose higher demands on 

the reaction vessel. The optimal processing temperature is 170 to 180 °C. 

3.   This study revealed that the influence of the time factor on the MLA conversion reaction 

results in the optimal time to reach the peak MLA yield under different temperature 

and catalyst dosage conditions not being completely consistent, and its parameters are 

related to temperature and catalyst dosage. After comprehensive investigation, 

including temperature, time, and catalyst dosage, the optimal process parameters are 

considered as a reaction time of 3 h, a reaction temperature of 170 to 180 °C, and a 

catalyst molar ratio of 0.075 to 0.1. Under these conditions, MLA can reach a maximum 

yield of 45.8%. 
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