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The extent of removal of lignin and hemicellulose are crucial indicators for 
evaluating the efficiency of enzymatic hydrolysis of crop straw. Numerous 
factors influence these two indices. Establishing a quantitative model that 
correlates these factors with hydrolysis efficiency is essential, as it can 
guide efficient hydrolysis. In this study, a predictive method for enzymatic 
hydrolysis efficiency in crop straw was proposed using Grey relational 
analysis (GRA), Kernel principal component analysis (KPCA), and a least 
squares support vector machine (LSSVM). The authors collected a 
dataset from actual production data and developed an efficiency predictive 
model using GRA for variable selection, KPCA for dimensionality reduction, 
and LSSVM for model training. This model allows for the direct estimation 
of the final enzymatic hydrolysis efficiency based on production condition 
variables, which can include enzyme amount, temperatures, pH, time, 
agitation, and straw dimensions. Extensive experimental testing validated 
the effectiveness of the proposed method, resulting in minimal errors, a 
high degree of fit, and exceptional performance. The methodology 
described in this study can serve as a foundation for optimising the design 
of efficient enzymatic hydrolysis production processes for crop straw. 
Additionally, it offers valuable soft measurements to support efficient 
control of the enzymatic hydrolysis process. 
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INTRODUCTION 
 

The pretreatment and utilization of agricultural waste have garnered increasing 

attention in the evolving landscape of environmental conservation and sustainable 

development. The academic community widely acknowledges using straw as a common 

agricultural byproduct (Saravanan et al. 2021). When straw is mishandled, it can pose 

significant environmental threats, such as air pollution, soil acidification, and increased 

greenhouse gas emissions resulting from open burning (Usmani et al. 2021). In contrast, 

crop straw is rich in lignin, hemicellulose, and other valuable biomass components. These 

components can be harnessed for bioenergy or bio-based material production upon 

biodegradation, offering economic benefits. Thus, effective biodegradation and harnessing 

of crop straw are crucial for advancing sustainable agricultural practices and ensuring 

environmental protection (Zhao et al. 2021). 
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Various techniques have been employed to degrade crop straw, of which enzymatic 

hydrolysis is the most prominent. This process uses cellulose and a mixture of enzymes to 

facilitate the breakdown of polymeric structures into smaller molecular entities, focusing 

on lignin and hemicellulose in the straw under optimal temperature and pH conditions 

(Nguyen et al. 2020). However, the removal efficiencies of lignin and hemicellulose during 

the enzymatic hydrolysis of straw are influenced by multiple factors, leading to intricate 

impacts on the extent of removal. Previous studies have highlighted that pretreatment with 

potassium ferrate solution augments the efficiency of the enzymatic hydrolysis of corn 

straw. However, comprehensive studies employing effective mathematical models that 

quantitatively elucidate the relationship between these determinants and hydrolytic 

outcomes are scarce. The literature points out that the utilisation of potassium ferrate 
composite solution as a pretreatment method boosts the enzymatic hydrolysis efficiency of 

corn straw (Tian et al. 2023). Implications of diverse NaOH-ball milling composite 

pretreatments have been reported (Yang et al. 2022). This study examines the effects of 

various pretreatment methods on the efficacy of straw enzymatic hydrolysis by applying 

mathematical models to clarify the connection between these influencing factors and 

enzymatic hydrolysis efficiency (Kumar et al. 2022). 

Considering the challenges mentioned above, this study proposes a novel approach 

for predicting the enzymatic hydrolysis efficiency of crop straw by combining grey 

relational analysis (GRA), kernel principal component analysis (KPCA), and least-squares 

support vector machine (LSSVM) (Adnana et al. 2019). The proposed method utilises 

GRA to gauge the impact of influencing factors on enzymatic hydrolysis efficiency. 

Additionally, it identifies pivotal factors, harnesses KPCA for feature extraction, and 

employs LSSVM to craft a predictive model for the extents of lignin and hemicellulose 

removal, prioritising efficiency, and precision. This methodology lays the groundwork for 

refining enzymatic hydrolysis production in crops and provides a sophisticated soft-

measurement tool for effectively controlling the enzymatic hydrolysis process (Agrawal et 

al. 2021). 

 

 

BACKGROUND 
 

The procedure for crop straw enzymatic hydrolysis can typically be divided into 

three stages: straw pretreatment, three-stage enzymatic hydrolysis, and solid-liquid 

separation. This is illustrated in Fig. 1. The harvested biomass was thoroughly washed 

during the straw pretreatment's initial phase, followed by careful drying and pulverisation 

using a specialised grinder. Subsequently, the crushed straw was transferred to an 

enzymatic hydrolysis reaction tank, where a specific composite enzyme and water were 

added and allowed to stand at room temperature for some time. The second stage involves 

a three-tiered enzymatic hydrolysis process. Three specific combinations of enzymes and 

additives, such as hydrogen peroxide, were introduced into the reaction tank at specific 

intervals. The conditions were optimised to boost the enzyme activity and ensure efficient 

enzymatic hydrolysis (Huang et al. 2019). The third stage centres on solid-liquid separation, 

a pivotal process in which machinery or filtration techniques are employed to distinguish 

and remove solid residues from the liquid enzymatic hydrolysate. This step ensures the 

purity of the liquid product and facilitates the subsequent processing and analysis (Zhu et 

al. 2023). 
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Numerous factors influence the efficiency of enzymatic hydrolysis, including straw 

length, reaction duration, temperature, pH, and other relevant variables. Identifying the 

dominant factors and establishing a quantitative link between them and enzymatic 

hydrolysis efficiency is essential, necessitating robust methodologies (Guo et al. 2023). 

 

 
 
Fig. 1. The enzymatic hydrolysis process of crop straw 

 

 

METHOD 
 

This study introduces a novel approach, GRA-KPCA-LSSVM, which is designed 

to predict the extents of removal of lignin and hemicellulose during the enzymatic 

hydrolysis of crop straw, as illustrated in Fig. 2. During the offline training stage, the 

LSSVM model was refined using both the GRA variable screening and KPCA dimension 

reduction techniques applied to the training set (Xiong et al. 2018). In the online prediction 

stage, the test data are selected based on the screening results and averaged before their 

dimensions are reduced (Adnan Ikram et al. 2022). The well-trained LSSVM model offers 

precise lignin and hemicellulose removal predictions. As depicted in the figure, 

𝑋1, 𝑋2, ⋯ , 𝑋𝑚 denote the initial variables; 𝑋1

′
, 𝑋2

′
, ⋯ , 𝑋𝑛

′
 signify the selected variables; 

𝑃1, 𝑃2, ⋯ , 𝑃𝑧  correspond to the principal component variables after dimensionality 

reduction, while 𝜓1 and 𝜓2 represent the two enzymatic hydrolysis efficiency indicators 

of the extents of lignin removal and hemicellulose removal, respectively (Liu et al. 2022). 

 

 
 

Fig. 2. Prediction of straw enzymatic hydrolysis efficiency based on GRA-KPCA-LSSVM 

 

GRA-based Variable Selection 
The GRA method enables quantitative assessment of the interrelationships among 

different factors within a given system. The fundamental concept behind GRA is to assess 

the strength of a relationship by evaluating the congruity between the geometric 

configurations of the reference data column and multiple comparison data columns. 

Consequently, the higher the degree of similarity, the stronger the correlation (Han et al. 
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2022). Considering the analysis of the lignin removal as an example, the specific steps of 

variable selection using GRA were as follows: 

(1) Input and output sequences were defined. There are 𝑚 input sequences available, where 

𝑖   represents {𝑋𝑖(𝑘)}, 𝑖 = 1,2, ⋯ , 𝑚,and 𝑚  is the number of variables of influencing 

factors, 𝑘 = 1, 2, ⋯ , 𝐿, and 𝐿 is the length of the sequence. The output sequence, denoted 
as {𝜓1(𝑘)}, corresponds to the extent of lignin removal. The data sequences were subjected 
to dimensionless processing by averaging. In this process, each sequence is divided by its 

respective mean values. For clarity, {𝑋𝑖(𝑘)} and {𝜓1(𝑘)} continue to represent the input 
and output sequences after averaging, respectively (Du 2022). 

(2) The correlation coefficient was calculated. The grey correlation coefficient of the 𝑖 
input sequence {𝑋𝑖(𝑘)}  and the output sequence {𝜓1(𝑘)}  at 𝑘  can be calculated by the 
following Eq. 1: 

              𝜁𝑖𝑜(𝑘) =
min

𝑖
min

𝑘
|𝜓1(𝑘)−𝑋𝑖(𝑘)|+max

𝑖
max

𝑘
|𝜓1(𝑘)−𝑋𝑖(𝑘)|

|𝜓1(𝑘)−𝑋𝑖(𝑘)|+𝜌⋅max
𝑖

max
𝑘

|𝜓1(𝑘)−𝑋𝑖(𝑘)|
                          (1) 

The resolution coefficient, denoted as 𝜌(𝜌 > 0), determines the resolution of the 
system, with smaller values indicating higher resolution. The value range of 𝜌 is typically 
confined to (0,1). min

𝑖
min

𝑘
|𝜓1(𝑘) − 𝑋𝑖(𝑘)| represents the minimum discrepancy between 

the two poles, while max
𝑖

max
𝑘

|𝜓1(𝑘) − 𝑋𝑖(𝑘)| denotes the maximum disparity between 

the two poles (Antos et al. 2022). 

(3) The grey correlation coefficient was computed. The numerical value of the correlation 

degree between the 𝑖  input sequence {𝑋𝑖(𝑘)}  and the output sequence {𝜓1(𝑘)}  can be 
expressed as follows: 

𝑟𝑖 =
1

𝐿
∑ 𝜉𝑖𝑜

𝐿
𝑘=1 (𝑘)                                (2)  

For each of the 𝑚 input sequences, the grey correlation degrees 𝑟1, 𝑟2, … , 𝑟𝑚 were 
determined. 

(4) Reordering was based on the degree of GRA and variable screening. Based on the 

calculated grey correlation degree, the influencing factor variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑚  were 

ranked in descending order. The dominant factor variables with a grey correlation degree 

greater than a certain threshold 𝜂 were retained and denoted as 𝑋1

′
, 𝑋2

′
, ⋯ , 𝑋𝑛

′
, where 𝑛 ≤

𝑚. 𝜂 ranges from 0.7 to 0.8. 
 

Input Dimension Reduction Based on KPCA 
KPCA uses kernel functions to map the original data into a high-dimensional 

feature space and then performs principal component analysis (Anowar et al. 2021). Using 

the lignin removal analysis as an example, each sample point 𝒙𝑖  is an 𝑛-dimensional 

column vector made of 𝑋1

′
, 𝑋2

′
, ⋯ , 𝑋𝑛

′
. These 𝑁 input samples form the input matrix 𝑿 =

[𝒙1, 𝒙2, ⋯ , 𝒙𝑁] . Using a nonlinear mapping function 𝛷 , one can project 𝑿  into a high-
dimensional feature space F , then the transformed representation 𝛷 ( 𝑿 )   
[𝛷(𝒙1), 𝛷(𝒙2), ⋯ , 𝛷(𝒙𝑁)] can be obtained (Kuang et al. 2014). If it is assumed that 𝑿 
meets the centralisation requirement in the feature space, meaning ∑ 𝛷𝑁

𝑖=1 (𝒙𝑖) = 𝟎, then 
the covariance matrix 𝐂F in F can be expressed as Eq. 3.: 
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    𝑪F =
1

𝑁
𝛷(𝑿)𝛷(𝑿)T =

1

𝑁
∑ 𝛷𝑁

i=1 (𝒙𝑖)𝛷(𝒙𝑖)
T             (3)   

 

Matrix 𝐂F  is a square 𝑛 × 𝑛  matrix, and an eigenvector analysis was conducted 

(Kuang et al. 2012). Letting 𝜆𝑘, 𝑽𝑘 represent the 𝑘-th eigenvalue and the corresponding 

eigenvector of 𝐂F(where 𝑘 = 1,2, ⋯ , 𝑛), one obtains: 

𝜆𝑘𝑽𝑘 = 𝐂F𝑽𝑘                                                     (4) 

Substituting Eq. 3 into Eq. 4 and simplifying, one obtains Eq. 5: 

𝑽𝑘 = ∑ 𝛷(𝒙𝑖)
𝛷(𝒙𝑖)

T𝑽𝑘

𝑁𝜆𝑘

𝑁
𝑖=1                      (5) 

The above equation can be further written as: 

𝑽𝑘 = ∑ 𝛽𝑘𝑖
𝑁
𝑖=1 𝛷(𝒙𝑖) = 𝛷(𝑿)𝜷𝑘                                 (6)  

The column vector 𝜷𝑘 = [𝛽𝑘1, 𝛽𝑘2, ⋯ , 𝛽𝑘𝑁]T  is substituted into Eq. 4 and 

multiplied by the left with 𝛷(𝑿)T to obtain: 

𝜆𝑘𝛷(𝑿)T𝛷(𝑿)𝜷𝑘 =
1

𝑁
𝛷(𝑿)T𝛷(𝑿)𝛷(𝑿)T𝛷(𝑿)𝜷𝑘                   (7) 

The 𝑁 × 𝑁 dimensional kernel matrix 𝑲 was introduced, and the value of the 𝑖 row 
𝑗  column 𝑖  and row 𝑗  was computed using the following kernel function (Anowar and 
Sadaoui 2021), 

𝑲𝑖,𝑗 = 𝛷(𝒙𝑖)
T𝛷(𝒙𝑗) = 𝜿(𝒙𝑖 , 𝒙𝑗)                                                  (8) 

where 𝜅(∙,∙) is the kernel function. The RBF kernel function 𝜅(𝒙𝑖 , 𝒙𝑗) = exp (−
∥∥𝒙𝑖−𝒙𝑗∥∥

2

2𝜎2 ) 

can be selected, 𝜎  is the kernel width, and the vector norm ∥∥𝒙𝑖 − 𝒙𝑗∥∥  is the Euclidean 

distance between 𝒙𝑖 and 𝒙𝑗. Substituting 𝑲 into Eq. 7, one obtains: 

𝜆𝑘𝑁𝑲𝜷𝑘 = 𝑲2𝜷𝑘                                                                               (9)         

This can be simplified to get: 

𝜆𝑘𝑁𝜷𝑘 = 𝑲𝜷𝑘                                                                               (10)      

The kernel matrix 𝑲 in the above equation can be computed using the input sample 
data, as per Eq. 8. Through solving the eigenvalues and eigenvectors of the kernel matrix 

𝑲, 𝜆𝑘，𝜷𝑘, 𝑘 = 1,2, ⋯ , 𝑛 can be obtained (Qin 2012). 

The authors sorted the eigenvalues in descending order to reduce the data 

dimensionality and adjusted the corresponding feature vectors accordingly. Next, the 

kernel principal component was selected based on the cumulative contribution associated 

with the eigenvalue (the ratio of the variance of the principal component to the total 

variance of the investigated variables). The cumulative contribution value was determined 

by adding an eigenvalue's contribution to the preceding eigenvalue's cumulative value. In 

this study, the authors selected feature vectors corresponding to eigenvalues with a 

cumulative contribution above 95%, and z principal components were determined to 

achieve data dimensionality reduction. 

For any input vector 𝒙, one can determine the 𝑧 principal components as: 

𝑝𝑙(𝒙) = ∑ 𝛽𝑘𝑖
𝑁
𝑖=1 𝜅(𝒙, 𝒙𝑖)                                               (11) 

where 𝑙 = 1,2, ⋯ , 𝑧. 
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Furthermore, if 𝑿 does not satisfy the centralisation requirement in feature space F, 

it is sufficient to substitute 𝑲 in Eq. 12 with 𝑲′ computed using the following equation: 

𝑲′ = 𝑲 − 𝑰𝑁𝑲 − 𝑲𝑰𝑁 + 𝑰𝑁𝑲𝑰𝑁                               (12) 

where 𝑰𝑁 is an 𝑁 × 𝑁 dimensional matrix, and each element is 
1

𝑁
. 

 
Training the LSSVM Model 

Support vector machine (SVM) is an effective approach that excels at handling 

small samples and problems that are linearly separable. Building on the SVM, the LSSVM 

method was designed to address nonlinear problems, offering the advantage of reduced 

computational complexity. Compared to the SVM, the LSSVM employs distinct 

optimisation objectives, incorporates equality constraints, and substitutes the original loss 

function with the sum of squared errors (Tian 2020). To illustrate this, the authors analysed 

the extent of lignin removal. Here, the 𝑧  principal components, obtained after GRA 
variable screening and KPCA dimensionality reduction, serve as the input 𝒙𝑖 =
[𝑝1, 𝑝2, ⋯ , 𝑝𝑧] . The associated output is 𝑦𝑖 , represented by 𝜓1 . This pair, {𝒙𝑖 , 𝑦𝑖}, 𝑖 =
1,2, ⋯ , 𝑁, forms the training set for LSSVM modelling, leading to the construction of the 

following optimisation problem: 
 

{
argmin

𝝎,𝝃,𝑏
𝑅(𝝎, 𝝃) =

1

2
𝝎T𝝎 +

1

2
𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1

𝑠. 𝑡.  𝑦𝑖 = 𝝎T𝜑(𝒙𝑖) + 𝑏 + 𝜉𝑖 , 𝑖 = 1,2, ⋯ , 𝑁
     (13) 

       

where 𝑅(𝝎, 𝝃) represents the loss function, 𝝎 denotes the weight parameter, 𝝃 = [𝜉𝑖], 𝑖 =
1,2, … , 𝑁, signifies the error variable with 𝜉𝑖 as its component, 𝑏 indicates the deviation 
term, and 𝑐  >0 serves as the penalty coefficient. To solve the optimisation problem, a 
Lagrangian function is constructed (Chen and Zhou 2018): 

𝐿(𝝎, 𝑏, 𝝃, 𝜶) =
1

2
𝝎T𝝎 +

1

2
𝑐 ∑ 𝜉𝑖

2𝑁
𝑖=1 − ∑ {𝛼𝑖[𝝎

T𝜑(𝒙𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖]}
𝑁
𝑖=1   (14) 

where the Lagrangian multiplier 𝛼𝑖 >  0 (𝑖 =  1 , 2 , . . . , N). The partial derivatives of the 
Lagrangian function 𝐿(𝝎, 𝑏, 𝝃, 𝜶) for 𝝎, 𝑏, 𝝃, 𝜶 are as follows: 

{
  
 

  
 

∂𝐿

∂𝝎
= 𝟎 ⇒ 𝝎 = ∑ 𝛼𝑖

𝑁
𝑖=1 𝜑(𝒙𝑖)

∂𝐿

∂𝑏
= 0 ⇒ ∑ 𝛼𝑖

𝑁
𝑖=1 = 0

∂𝐿

∂𝜉𝑖
= 0 ⇒ 𝛼𝑖 = 𝑐𝜉𝑖 , 𝑖 = 1,2, … , 𝑁

∂𝐿

∂𝛼𝑖
= 0 ⇒ 𝝎T𝜑(𝒙𝑖) + 𝑏 + 𝜉𝑖 − 𝑦𝑖 = 0, 𝑖 = 1,2, … , 𝑁

         (15) 

According to Eq. 15, the following system of linear equations can be derived by 

eliminating 𝝎 and 𝜉𝑖: 

[
 
 
 
 

0 𝟏𝑁
T

𝟏𝑁 𝜽 +
1

𝑐
𝑰𝑁]

 
 
 
 

[𝑏

𝜶

] = [
0

𝒚

]                               (16) 
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Here, 𝒚 = [𝑦1, ⋯ , 𝑦𝑁]T , 𝟏𝑁 = [1, ⋯ ,1]T , 𝑰𝑁  is the identity matrix, 𝜶 = [𝛼1, ⋯ , 𝛼𝑁]T , 

𝜽𝑖,𝑗 = 𝜑(𝒙𝑖)
T𝜑(𝒙𝑗), 𝑖, 𝑗 = 1, ⋯ , 𝑁. 𝜽𝑖,𝑗 can be calculated by kernel function: 

𝜽𝑖,𝑗 = 𝜅(𝒙𝑖 , 𝒙𝑗) = 𝜑(𝒙𝑖)
T𝜑(𝒙𝑗)                                    (17) 

For optimal LSSVM performance, the choice of a suitable kernel function, 𝜅(∙,∙), 
is pivotal. Common kernel functions include the polynomial, RBF (radial basis function), 

and linear kernels. Given its widespread use in tackling nonlinear problems, the RBF was 

deemed suitable for this study (Wang and Hu 2015). Therefore, the RBF is selected as 

follows: 

𝜅(𝒙𝑖 , 𝒙𝑗) = exp (−
∥∥𝒙𝑖−𝒙𝑗∥∥

2

2𝜎2 )                                 (18) 

Here, 𝜎  is the kernel width, and the vector norm ∥∥𝒙𝑖 − 𝒙𝑗∥∥  is the Euclidean distance 

between 𝒙𝑖 and 𝒙𝑗. 

In summary, using the training data, it is possible to estimate the parameters 𝑏 and 
𝜶, enabling one to derive the LSSVM regression function model. Consequently, accurate 

predictions for the new test samples 𝒙 can be obtained. The result is as follows, 

𝑓(𝒙) = ∑ 𝛼𝑖
𝑁
𝑖=1 𝜅(𝒙, 𝒙𝑖) + 𝑏                              (19) 

where the kernel function 𝜅(𝒙, 𝒙𝑖) is calculated according to Eq. 18, and 𝒙𝑖 is the training 

sample vector (Yuan et al. 2015). 

 
Prediction of Enzymatic Hydrolysis Efficiency 

In the online prediction phase, as shown in Fig. 2, data from m influencing variables 

in the actual project is first collected. The authors selected and averaged the test data based 

on the screening outcomes from GRA-based Variable Selection. Drawing from the insights 

in Input Dimension Reduction Based on KPCA and using Eq. 11, these data were employed 

for dimensionality reduction. Finally, using the trained LSSVM model, the enzymatic 

hydrolysis efficiency was predicted, particularly the predicted outcomes of the lignin and 

hemicellulose removal values, as determined by Eq. 19. 

 

 

TEST VERIFICATION 
 
Process and Data 

This study used data from the crop straw enzymatic hydrolysis production process 

of Zhongnong Jiemei, Ltd. Co., Suzhou (Anhui, China). Through rigorous research and 

meticulous analysis, 15 influencing factors were selected: the length of crushed straw (𝑋1), 

the first stage reaction temperature (𝑋2), the first stage reaction pH (𝑋3), the first stage 

reaction time (𝑋4), the second stage reaction temperature (𝑋5), the second stage reaction 

pH (𝑋6), the second stage reaction time (𝑋7), the third stage reaction temperature (𝑋8), the 

third stage reaction pH (𝑋9), the third stage reaction time (𝑋10), the amount of crop straw 

added (𝑋11), the amount of water added (𝑋12), the volume of the enzymatic hydrolysis tank 

(𝑋13), the speed of the enzymatic hydrolysis tank (𝑋14), and room temperature (𝑋15).  

Additionally, the corresponding extents of lignin removal and hemicellulose 

removal, i.e., 𝜓1 and 𝜓2, were recorded. The collected data were organised into training 
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and testing datasets. The dataset comprised of 200 sample groups. Of these, 160 groups 
were designated for training, and the remaining 40 groups served as test sets for evaluation. 

 

Evaluating Indicators 
To evaluate the efficacy of the model, two evaluation metrics were employed, 

namely the root mean square error (RMSE) and the coefficient of determination (R2): 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑜𝑏𝑠−𝑦𝑝𝑟𝑒𝑑)
2𝑛

𝑖=1

𝑛

R2 = 1 −
∑ (𝑦𝑜𝑏𝑠−𝑦𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

∑ (𝑦𝑜𝑏𝑠−𝑦⃐ 𝑜𝑏𝑠)
2𝑛

𝑖=1

       (20)   

 

The formula uses the variables 𝑦obs  and 𝑦pred  , to represent the observed and 

predicted values, respectively. Additionally, 𝑦⃐𝑜𝑏𝑠  represents the average of all observed 

values, and 𝑛 denotes the total number of samples. The RMSE quantifies the difference 

between the predicted and actual values. The RMSE value typically ranges between 0 and 

1, where values closer to 0 indicate high accuracy. In contrast, R2 measures how well the 

predicted values fit the actual values. A higher R2 value suggests a better fit of the model 

(Wang et al. 2022).  

 
 
RESULTS AND ANALYSIS 
 
Analysis of the Effect 

During the training stage, the variables were screened, a dimensionless averaging 

of the samples was performed, and a grey correlation analysis conducted. For the lignin 

removal analysis, the resolution coefficient 𝜌  was set to 0.4, and then computed the 
correlation degree was computed. This resulted in the following correlation degrees: 𝑟1 = 

0.642, 𝑟2 = 0.778, 𝑟3 = 0.699, 𝑟4 = 0.747, 𝑟5 = 0.770, 𝑟6 = 0.717, 𝑟7 = 0.751, 𝑟8 = 0.731, 

𝑟9 = 0.758, 𝑟10 = 0.764, 𝑟11 = 0.672, 𝑟12 = 0.592, 𝑟13 = 0.545, and 𝑟14 = 0.592, and 𝑟15 = 

0.593. Based on the degree of correlation, the influencing factors were arranged in 

descending order: 
 

 𝑋2 > 𝑋5 > 𝑋10 > 𝑋9 > 𝑋7 >𝑋4 >𝑋 8 > 𝑋6 > 𝑋3 > 𝑋11 > 𝑋1 > 𝑋15 > 𝑋14 > 𝑋12 > 𝑋13.  
 

Using a threshold value of 0.65, twelve influencing factors were selected: 𝑋2, 𝑋5, 𝑋10, 𝑋9, 

𝑋7, 𝑋4, 𝑋8, 𝑋6, 𝑋3, 𝑋11, 𝑋1, and 𝑋15. 

The data for the influencing factors were first screened using GRA and then 

subjected to KPCA dimensionality reduction. For instance, Table 1 lists the 12 eigenvalues 

(in descending order) and their associated and cumulative contribution values, considering 

the extent of lignin removal. Table 1 shows that, in the training phase, there were four 

principal components with a cumulative contribution exceeding 95%. 

Using the method detailed in Input Dimension Reduction Based on KPCA, the 

training data were reduced to four principal components and they were used for the 

LSSVM modelling. The penalty coefficient 𝑐 and kernel function width 𝜎 of the LSSVM 

model were chosen as 30 and 0.01, respectively. Upon completing the modelling, the 

authors employed the method described in Prediction of Enzymatic Hydrolysis Efficiency 

to test and validate the data in the test set. 
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Table 1. Kernel Principal Component Analysis Results 

Serial Number Eigenvalue Contributions (%) Cumulative Contribution (%) 
1 8.712 37.301 37.301 
2 3.421 27.049 64.351 
3 1.413 22.278 86.629 
4 1.043 12.877 99.507 
5 0.673 0.286 99.793 
6 0.452 0.101 99.894 
7 0.032 0.033 99.932 
8 0.014 0.025 99.957 
9 0.004 0.017 99.974 
10 0.003 0.015 99.990 
11 0.002 0.005 99.996 
12 0.003 0.004 100 

 

Figures 3 and 4 depict the results of the model training, prediction, and error 

analysis for the final removal values of lignin and hemicellulose. The figures show the 

training and prediction errors, representing the differences between the measured and 

predicted or actual training values. 

 

 
Fig. 3. Lignin removal modelling and prediction results 
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Fig. 4. Hemicellulose removal modelling and prediction results 

 

From Figs. 3 and 4, it was inferred that the method described in this study accurately 

modeled and predicted the lignin removal. The RMSE of training was 4.50, the fitting 

degree was 0.78, the RMSE of testing was 5.11, and the fitting degree was 0.73; for the 

modelling and prediction of hemicellulose removal, the RMSE during training was 4.64, 

the fitting degree was 0.72, the RMSE during testing was 5.14, and the fitting degree was 

0.70. The proposed method demonstrated robust modelling and prediction capabilities for 

lignin and hemicellulose removal. Additionally, the random selection of actual industrial 
data for this study led to fewer edge data points in the high-dimensional space of the dataset, 

enhancing the predictive outcomes at the inference stage. 

 

Comparative Analysis 
The authors verified the efficacy of their proposed method through a comparative 

study that examined various resolution coefficients (𝜌), penalty coefficients (𝑐), and kernel 
function widths (𝜎 ). The effectiveness of the GRA variable-screening module in the 
proposed method (GRA-KPCA-LSSVM) was verified and compared with that of the non-

GRA module (KPCA-LSSVM). The results are illustrated in Figs. 5 and 6 in Table 2. 
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Fig. 5. Prediction results and errors of lignin removal 

 

 
Fig. 6. Prediction results and errors of hemicellulose removal 
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Table 2. Analysis of Removal Error Results 

 

Method of this 

article (𝜌 = 0.4, 𝑐 = 

30, 𝜎 = 0.01) 

KPCA-LSSVM 

(𝜌 = 0.4, 𝑐 = 30, 

𝜎 = 0.01) 

Method of this 

article (𝜌 = 0.4, 𝑐 = 

20, 𝜎 = 0.04) 

Method of this 

article (𝜌 = 0.6, 𝑐 = 

30, 𝜎 = 0.01) 

RMSE 

𝝍𝟏 

𝝍𝟐 

5.11 
5.14 

6.14 
6.29 

5.24 
5.26 

5.39 
5.30 

R2 

𝝍𝟏 

𝝍𝟐 

0.73 
0.70 

0.67 
0.64 

0.72 
0.69 

0.72 
0.69 

 

Table 2 shows that the KPCA-LSSVM method provided accurate RMSE 

predictions for lignin and hemicellulose removal values, measured at 6.14 and 6.29, 

respectively. High R2 values of 0.67 and 0.64 were obtained for lignin and hemicellulose 

removal, respectively. The proposed method (𝜌    0.4, 𝑐    30, 𝜎    0.01) yielded RMSE 

values of 5.11 and 5.14 for the predicted lignin and hemicellulose removal, respectively, 

with corresponding R2 values of 0.73 and 0.7. The results obtained by this method 

demonstrate a high level of prediction accuracy, minimal error, and a substantial degree of 

model fitting. Using GRA for variable selection considerably improved performance in 

modelling and prediction. 

Simultaneously, it is evident that adjusting the 𝜌 value to 0.6 (𝜌   0.6, 𝑐   30, 𝜎   
0.01) within this approach led to an increase in the corresponding RMSE values for 

predicting lignin and hemicellulose removal, with values of 5.39 and 5.30, respectively. 

Concurrently, R2 shows a minor decline to 0.72 and 0.69. Through changing the parameters 

𝑐 and 𝜎 (𝜌 = 0.4, 𝑐 = 20, 𝜎 = 0.04), the corresponding RMSE increased to 5.24 and 5.26, 

and R2 decreased to 0.72 and 0.69. The observation mentioned above suggests that 

variations in 𝜌, 𝑐, and 𝜎 will exert a substantial impact on both the accuracy of predictions 
and the degree of model fitting. The appropriate selection of 𝜌 , 𝑐,  and 𝜎  values can 
effectively minimise prediction errors and enhance the degree of model fitting. This study 

used the grid search method to determine the optimal parameters. In addition, advanced 

optimisation techniques, such as particle swarm optimisation and genetic algorithms, can 

be employed for further refinement. 

 
 
CONCLUSIONS 
 

The extents of lignin and hemicellulose removal are crucial for assessing crop 

straw’s efficiency in enzymatic hydrolysis. This study proposes an efficient prediction 

method for the two straw enzymatic hydrolysis efficiency indicators based on GRA-

KPCA-LSSVM.  

1. First, a prediction model for the enzymatic hydrolysis efficiency was developed by 
employing GRA variable screening, KPCA input dimension reduction, and LSSVM 

model training using actual production data.  

2. Subsequently, this model was applied using production condition data to accurately 
estimate the final enzymatic hydrolysis efficiency in real-time.  
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3. The effectiveness of this method was validated through numerous experimental tests. 
Through utilising the acquired model for prediction, the authors observed minimal 

errors and achieved a high level of fitting accuracy, indicating exceptional performance. 
 

As a broader conclusion, the method introduced in this paper offers an optimised 

design basis for the efficient enzymatic hydrolysis of crops and provides soft sensor support 

for effectively controlling the enzymatic hydrolysis process. However, the prediction 

accuracy of the methodology presented in this paper was constrained by the limited scale 

of training samples and the absence of sophisticated parameter optimization strategies. 

Future work should concentrate on assembling more extensive datasets, alongside the 

utilization of advanced modelling algorithms and refined parameter optimization 

techniques. Such an approach has potential to amplify the accuracy of predictions and 

bolster the generalizability of the model. 
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