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Laboratory and field experiments were performed to examine the 
feasibility of using Time Domain Reflectometry (TDR) to monitor moisture 
content (MC) of wood and standing trees. The TDR was used to detect the 
electromagnetic wave propagation time of four tree species (Betula 
platyphylla, Tilia tuan, Picea asperata, and Fraxinus mandshurica) at 
different MCs. During the TDR test, effects of probe insertion depths on 
MC predictive accuracy were considered. The best results were obtained 
at an insertion depth of 8 cm. At the selective 8 cm insertion depth, a 
species-specific MC prediction model (0.94 ≤ R2 ≤ 0.98), a generalized 
model for the four species (R2 = 0.65), and a hybrid model for the species 
with similar densities (0.80 ≤ R2 ≤ 0.96) were constructed, respectively. 
Overall, the species-specific MC prediction model showed good predictive 
ability for both tree and wood disc samples, including that TDR can be 
used to detect wood and standing tree MC. If possible, the hybrid model 
can be used for species with similar density.  
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INTRODUCTION 
 

Time Domain Reflectometry (TDR) is an electronic measurement technique that 

measures electrical parameters such as the dielectric constant and resistivity of a medium 

by measuring the propagation time of an electromagnetic pulse (Hernández-Santana et al. 

2008; Schimleck et al. 2011; Dahlen et al. 2015). As a new detection technology, TDR, 

has been widely applied in soil MC testing. Because the bulk permittivity of a composite 

material (e.g., a porous medium) is a composite average of the permittivity of the 

components in the composite, it is usually simulated by a dielectric mixing model. Water, 

however, has a high dielectric constant, much higher than that of the other soil components, 

so soil MC can be measured by the reflected signal of the TDR input transmission line 

pulse signal (Jones et al. 2002). 

Theoretically, TDR can be applied to monitor MC in any porous material, such as 

a standing tree (Dahlen et al. 2015). A standing tree can be regarded as a three-phase 

inhomogeneous system of wood-water-air, and at room temperature the dielectric constant 

of water (80) is much higher than that of dry wood (2 to 6) and air (1), making the TDR 

also suited for measuring MC in trees (Ishida et al. 1959; Schimleck et al. 2011). 

Researchers have been working to determine the feasibility of the TDR for 

detecting MC in standing trees. In 1996, Wullschleger et al. used TDR equipment to 
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monitor the MC of a total of 160 sample trees of several hardwood species over a long 

period of time. They established a general calibration equation for MC versus dielectric 

constant, where R2 = 0.89 (Gao et al. 2019; He et al. 2021). Schimleck et al. (2011) 

investigated the effect of irrigation and other storage or environmental factors on MC of 

wet-stored logs using TDR equipment to continuously monitor wet-stored logs, 

demonstrating that TDR can accurately respond to changes in MC. While each of these 

studies showed potential for TDR as a means of measuring MC in standing trees, it should 

be noted that probe length can have an impact on the results in different experiments. In 

most studies, the probe length of the TDR equipment ranged from 2 to 20 cm) (Xu and 

Wang 2014). Probe length affects the effectiveness of the detection, with long probes 

resulting in signal attenuation and short probes resulting in lower signal resolution (Guo et 

al. 2023; He et al. 2021; Jones et al. 2002; Schimleck et al. 2011). In order to accurately 

use TDR to detect trunk MC, a probe of at least 10 cm needs to be used. However, TDR 

probe lengths can be limited by trunk diameter, and long probes are difficult to insert into 

the trunk. Existing calibration equations may not apply if measurements are made with 

short probes (Gao et al. 2019). Therefore, in order to implement TDR as a basis for 

monitoring standing trees MC, it was first necessary to determine what probe length is the 

most conducive for predicting MC and carry out a calibration study (Castiglione et al. 

2006). 

The aim of this study was to attempt to establish a species-specific MC prediction 

model to accurately monitor standing trees MC in real time using TDR, on the basis of 

analyzing effects of different probes insertion depths and MCs on the test results, which 

may provide data support for estimating the MC of all tree species. 

  

 
EXPERIMENTAL 
 

Materials  
Four tree species, Betula platyphylla, Tilia tuan, Picea asperata, and Fraxinus 

mandshurica were used in this study. All samples were obtained from Yichun City, 

Heilongjiang Province, China. Standing trees with a diameter at breast height of 120 to 160 

mm were selected from sample plots of an artificial forest aged 30 to 50 years, 25 trees of 

each species. Then, for each tree species, five wood disks with a thickness of 50 mm at 

breast diameter were selected for indoor experiments, and the rest of the standing trees 

were used for outdoor experiments. 
 
Methods 

Fresh wood discs were stored in a refrigerator at -5 °C, from which all samples of 

one species were taken at a time for the experiment. Firstly, the disc samples were taken 

and placed in a cool place to thaw for 24 h. Wood samples were hydrated in a saturation 

tank for one month prior to the start of the experiment. Following saturation, wood sample 

weight was measured. Then, two small holes with a depth of 120 mm were drilled at the 

middle height of the disk using an electric drill, with the diameter (3.5 mm) and spacing 

(30 mm) of the holes matching the diameter and spacing of the two probes of TDR, and 

probe orientation was parallel to the grain. The TDR equipment used for the experiment 

was a CS616 moisture sensor (double probe, 30 cm long) and CR800 data collector (Fig.1). 

Once the holes were drilled, the double probe was inserted, the insertion depth was 

increased sequentially (4, 6, 8, 10, and 12 cm), and the first waveform readings were taken 
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at each insertion depth. The samples were then allowed to dry naturally and weighed every 

12 h. When the sample mass was reduced to less than 50 g within 12 h, the sample was 

dried in an oven at 105 °C for 24 h each time. After each drying and weighing, the TDR 

test procedure was repeated until the sample was absolutely dry. The absolute dry mass 

was recorded and the corresponding MC was calculated. 

Boreholes were drilled at the breast diameter of standing trees and TDR tests were 

performed in the same way as in the indoor experiment. MC of standing trees was measured 

using growth cones to take cores. 

 

 
 

Fig. 1. Schematic diagram of experiment 

 

 

RESULTS AND DISCUSSION 
 
Construction of Species-specific MC Prediction Model 

The regression models (linear, quadratic polynomial, logarithmic, exponential, and 

power function models) of MC and electromagnetic wave propagation time (EWPT) were 

computed and analyzed using statistical analysis, and the coefficient of determination (R2), 

residual sum of squares (Q), F-value, and significance (Sig.) were selected as the indicators 

for evaluating the models. 

The R2 of the regression models for the four tree species at different insertion depths 

of the probes are shown in Table 1. Both linear and quadratic polynomial models showed 

R2 greater than 0.90, so these models were chosen. 

To investigate the effect of TDR probe insertion depth on model construction, the 

evaluation indices of different tree species were compared at 4, 6, 8, 10, and 12 cm depths, 

and Sig. of all models were obtained < 0.01. R2 and F-values were largest at insertion 

depths of 8 cm or 10 cm, which means that the inversion model fits better at these two 

insertion depths (Table 1).  

Considering the difficulty of drilling holes, reducing the damage to trees and other 

practical issues, the data of 8 cm insertion depth was chosen to construct a species-specific 

MC prediction model, as follows, 

y = ax2 + bx + c                                                               (1) 

y = dx + e                                                                             (2)    

where y is the MC, x is the EWPT. The coefficients a, b, and c are given in Table 2. 
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For the four tree species, the relationship between EWPT and MC and the two 

species-specific MC prediction models are shown in Fig. 2. The strong correlation between 

EWPT and MC can be visualized in Fig. 2. The fitting of the two models for each tree 

species was also relatively similar, but there were differences in the models for different 

tree species. Under the same EWPT, the MC from largest to smallest was always: Picea 

asperata, Tilia tuan, Betula platyphylla, and Fraxinus mandshurica. 

 
Table 1. R2 for Different Models for 4 Tree Species at Different Insertion Depths  

Species Depth Linear Quadratic Logarithmic Exponential Idempotent 

Picea 
asperata 

4 0.962 0.981 0.944 0.791 0.830 

6 0.977 0.980 0.933 0.858 0.848 

8 0.942 0.945 0.944 0.791 0.831 

10 0.955 0.955 0.953 0.810 0.853 

12 0.942 0.942 0.939 0.805 0.851 

Tilia tuan 

4 0.936 0.976 0.924 0.777 0.833 

6 0.959 0.973 0.948 0.868 0.855 

8 0.981 0.980 0.974 0.777 0.833 

10 0.979 0.980 0.967 0.803 0.862 

12 0.973 0.976 0.955 0.825 0.884 

Betula 
platyphylla 

4 0.961 0.971 0.965 0.746 0.890 

6 0.977 0.978 0.976 0.798 0.830 

8 0.984 0.985 0.978 0.825 0.861 

10 0.978 0.981 0.968 0.840 0.879 

12 0.979 0.980 0.957 0.858 0.899 

Fraxinus 
mandshurica 

4 0.936 0.973 0.935 0.867 0.884 

6 0.965 0.959 0.955 0.880 0.907 

8 0.971 0.971 0.963 0.886 0.884 

10 0.972 0.976 0.958 0.909 0.937 

12 0.963 0.973 0.943 0.919 0.944 

 

 
 

Fig. 2. Linear and quadratic polynomial species-specific MC prediction models 
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Table 2. Coefficients of Selective Models for Four Tree Species at 8 cm Insertion 
Depths 
 

Species Species 
Quadratic 
polynomial 
models a 

Quadratic 
polynomial 
models b 

Quadratic 
polynomial 
models c 

Linear 
models d 

Linear 
models e 

Tilia tuan Tilia -0.001 0.229 -3.212 0.189 -2.841 

Picea 
asperata 

Spruce -0.005 0.401 -4.861 0.213 -3.163 

Fraxinus 
mandshurica 

Ash 0.005 -0.104 0.478 0.097 -1.471 

Betula 
platyphylla 

Birch 0.002 0.061 -1.437 0.144 -2.179 

 

Construction of Generic MC Prediction Model 
The species-specific MC prediction model is only applicable to certain tree species, 

which limits the application of TDR. During the analysis, it was found the species-specific 

MC models were different for different tree species, but the variation pattern of EWPT 

with MC is identical.  For a generic MC prediction model that can be widely applied for 

four tree species, a quadratic polynomial model was constructed, as follows. 

y = -0.0003x2 + 0.124x – 1.853                                                  (3) 

The ANOVA of the generic MC prediction model is shown in Table 3, where Sig. 

< 0.01, indicating a significant model. R2 was 0.65, and the goodness-of-fit was lower than 

that of the species-specific MC prediction model.  

 

Table 3. ANOVA of Generic MC Prediction Model 

 Variance sum Df Ms F Sig 

Regression  23.078 2 11.539 176.024 0 

Residuals 12.258 187 0.066 — — 

Total 35.336 189 — — — 

 

When comparing the physical properties of tree species, the differences between 

four species-specific MC prediction models were related to air-dry density. The air-dry 

densities of the four species tested were, in decreasing order, 0.70 g/cm3 for ash, 0.60 to 

0.70 g/cm3 for birch, 0.42 to 0.56 g/cm3 for Tilia tuan, and 0.40 to 0.52 g/cm3 for spruce. 

In the species-specific MC prediction model, the predicted values of MC at the same EWPT 

for different tree species showed a negative correlation with density. In this case, the 

difference in air-dry density between ash and spruce was large, so it resulted in a lower 

goodness of fit for the generic MC prediction model. The differences between the species-

specific MC prediction models for ash and spruce, and the generic MC prediction models 

for the four tree species are shown in Fig. 3. 

Based on the above analysis, birch (0.60 to 0.70 g/cm3), Tilia tuan (0.42 to 0.56 

g/cm3) and Picea asperata (0.40 to 0.52 g/cm3) species with similar air-dry densities were 

selected, and a hybrid model was established between each two species. The three hybrid 

models and their evaluation indexes are shown in Table 4. The R2 of the three hybrid 

models were all greater than 0.8, indicating a high degree of fit and much higher than the 

generic MC prediction model. However, compared with the Picea asperata-Tilia tuan and 

Tilia tuan-Betula platyphylla hybrid models, the R2 and F-values of the Picea asperata-
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Betula platyphylla hybrid model were lower, and the Q value was twice that of the other 

two hybrid models. The was attributed to the relatively large difference in the air-dry 

densities of spruce and birch. Therefore, if the air-dry densities of different tree species are 

essentially the same, a generic MC prediction model can be constructed. 

 
Fig. 3. Species-specific MC prediction models for ash and spruce and a generic MC prediction 
model for the four tree species 

 

Table 4. Hybrid Models and Evaluation Indicators 
Name Model R2 Q F 

Picea asperata-
Tilia tuan 

y = -0.003x2 + 
0.296x – 3.812 

0.96 1.012 1139.1 

Tilia tuan-Betula 
platyphylla 

y = -0.0037x2 + 
0.044x – 1.499 

0.95 1.033 901.8 

Picea asperata-
Betula 

platyphylla 

y = -0.0003x2 + 
0.194x – 2.813 

0.80 2.156 158.2 

 

Field Calibration of Species-specific MC Model 
To accurately monitor MC of standing trees in real time, four species-specific MC 

prediction models were applied to the field tests. The relationship between EWPT and 

actual values of MC in standing trees, as well as the predicted values of the species-specific 

MC prediction models are shown in Fig. 4. 

The relationship between EWPT and MC in standing trees showed a similar trend 

to that of the indoor experimental data, which also supports the feasibility of using TDR to 

monitor the MC of standing trees. Using the species-specific MC prediction model 

obtained from the indoor experiments to calculate the predicted values of standing trees 

MC, the results showed that the predicted values of white birch had the smallest difference 

from the true values, with an average difference of 10.8%, and the predicted values of 

spruce had the largest difference from the true values, with an average difference of 58.8%. 

In addition, the predicted values of all tree species were larger than the true values, which 

may be induced by many factors, such as complex environmental factors, loss of sap during 

drilling process and relative concentrated MC variation range of standing tree. In addition, 

the distribution of moisture in standing trees can be very different from that in 

progressively drying discs of wood after soaking, so the indoor model can produce large 
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errors when used as a predictor for outdoor experiments. Thus further study is needed for 

accurately estimating tree MC. Overall, field test data proved that TDR can be used to 

detect tree MC. 

 

 
Fig. 4. Actual (point) vs. predicted (line) MC of standing trees 

 

 
CONCLUSIONS 
 
1. Indoor and field experiments on moisture content (MC) detection of Betula platyphylla, 

Tilia tuan, Picea asperata, and Fraxinus mandshurica showed that there was a strong 

correlation between electromagnetic wave propagation time (EWPT) and MC, and the 

correlation was affected by the insertion depth of the probe.  

2. Species-specific MC prediction models with different insertion depths were 

constructed based on the data from the indoor experiments. The results showed that the 

linear and quadratic polynomial models constructed at an insertion depth of 8 cm were 

highly predictive.  

3. The quadratic polynomial model was utilized to construct a generic MC prediction 

model for the four tree species, but with a lower accuracy (R2 = 0.65). This may be 

related to the differences in air-dry density of different tree species. The data of tree 

species with similar air-dry density were used to construct Picea asperata-Tilia tuan, 

Tilia tuan-Betula platyphylla, and Picea asperata-Betula platyphylla hybrid models, 

and the R2 was 0.96, 0.95, and 0.80, respectively. This means that the same MC 

prediction model could be used for tree species with similar density.  

4. In the field experiments, the EWPT and MC also had a similar trend to the indoor 

experiments, but the MC calculated using the species-specific MC prediction model 

was higher than the actual value, which may be related to environmental factors and 

sap loss after drilling. 

5. The natural variability and density differences in the trunks of different tree species can 

lead to variations in trunk moisture distribution, resulting in large differences in MC, 
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which makes time domain reflectometry (TDR) field monitoring difficult. The indoor 

model constructed in this paper cannot be used for all tree species in the field, but it 

can provide a reference for the detection of water content in standing trees. In order for 

TDR to be accurately applied to MC detection in standing trees, a large number of 

experiments need to be conducted in the field. 
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