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This study examines the possible utilization of machine learning and 
decision-making in the woodworking sector. This refers to the recognition 
of certain sounds produced during tool idling. The physical and geometric 
properties of the circular saw blade result in different noises being 
generated during idling. It was assumed that the respective circular saw 
blades can be recognized by these noises. The noises of three different 
circular saw blades were examined while idling at the same speed. In 
order to obtain useful data for the deep learning process, the coarse 
signals were subjected to frequency analysis. A total of 240 noise samples 
were taken for each circular saw blade and later subjected to signal 
processing. Frequency-power spectra were created using a custom 
program in Matlab Campus Edition software, such as for the 
spectrograms. A short Fourier transform was used to create the average 
spectral density plot using self-made software. The input data for the deep 
learning network was created in Matlab using a custom program. The 
GoogleNet deep learning network was used as a data classifier. After 
training the network, an accuracy of 97.5% was achieved in recognizing 
circular saw blades. 
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INTRODUCTION 
 

The subjective sensation of a sound depends on its intensity and can be expressed 

by the following equation: 
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where L present sound level or subjective sound intensity, I is sound intensity, I0 is sound 

intensity at threshold of audibility, p is acoustic pressure, and p0 is acoustic pressure at 

threshold of audibility. The human ear is able to detect sound intensity from 10-12 to 1 

W/m2 or tones with frequencies from 20 Hz up to 20 kHz. In this research, the recorded 

sounds ranged from 0 to 44800 Hz, which extends well above the highest level of one's 

ear’s auditory range.  
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 However, the difference between noise and tone is that noise consists of many 

different tones at different frequencies and with different intensities. For this reason, it is 

necessary to perform Fourier analysis or to extract recordings into individual frequencies 

with corresponding using the Fast Fourier algorithm: 
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In these equations, N is number of samples, hi and gi equal sets of samples, W=e-jΩT  and 

Fk  Fourier series for discrete Fast Fourier Transformation (FFT). For N/2 even and N/2 

odd samples, the expressions in Eqs. 3 and 4 could be regarded as discrete Fourier 

transformations (DFTs). The number of iterations required for completing the process 

described in Eq. 3 is Nlog2N. The short-time Fourier transform or short-term Fourier 

transform (STFT) is a natural extension of Fourier transform in addressing signal non-

stationarity by applying windows for segmented analysis. In practice, the procedure for 

computing STFTs is to divide a longer time signal into shorter segments of equal length 

and then compute the Fourier transform separately on each shorter segment. The 

sound/noise signals thus transformed could present the starting point for alternative 

machining system and process monitoring, and introducing a smart machining. 

 The focus of this paper is on monitoring processing through sound analysis. During 

machining, acoustic signals that are generated can provide valuable information about the 

tool’s condition and the efficiency of the machining process. By analyzing the noise, it is 

possible to detect tool wear or irregularities in the work in good time, which enables the 

correct adjustment of parameters or the replacement of tools before major problems or a 

decline in product quality occur. 

 Smart machining is an inevitable step towards the design of computer-integrated 

manufacturing as a logical step towards Industry 4.0. In this light, the importance of 

monitoring the processing process is becoming more and more pronounced. There are 

various techniques to control the performance of the woodworking process. Some of these 

are non-contact and are best suited to high-speed production lines, whereas others are 

contact methods that are very accurate for research but not always suitable for online 

control (Davim 2013; Aguilera and Davim 2017). Process monitoring through the use of 

various types of sensors, data acquisition, and data processing creates the conditions for 

smart machining (Mishra et al. 2018.). In addition to the common methods of force 

measurement (Su et al. 2013; Li et al. 2018; Liu et al. 2018; Zhou et al. 2018) or vibration 

monitoring (Fu et al. 2019), sound and acoustic analysis is also of great interest for 

monitoring machining processes (Cao et al. 2017; Kothuru et al. 2018; Kishawy et al. 

2018). Machine learning and its implementation are essential in novel technological 

processes in order to increase process performance and thus quality. So far, various 

techniques have been developed to accomplish these tasks, e.g. decision trees, support 

vector machine, regression analysis, Bayesian networks, K-nearest neighbor classifier, 
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deep learning, etc. Deep learning itself is a part of the broader field of machine learning, 

which is a part of the broader field of artificial intelligence. 

During the cutting process involving the circular saw blade, various parameters of 

the process are monitored, such as power, force, and surface quality. This article deals with 

the problem of recognizing a particular saw blade, which is one of the most important 

aspects of manufacturing. The rotation of the saw blade produces a specific sound, also 

known as whistling, which is generated by the geometry of the teeth and the vibrations of 

the blade during machining (Aguilera 2011; Kminiak and Kubš 2015; Kvietkova et al. 

2015; Svrzic et al. 2021, 2023). Noise produced during machining of wood materials also 

can be a source of harm to workers and an environmental hazard (Özşahin and Singer 

2022). An artificial neural network (ANN) model was developed to model the effects of 

wood species, cutting width, number of blades, and cutting depth on noise emission in the 

machining process. The different types of sensors as well as a microphone for noise 

recording were used for tool condition monitoring during chipboard drilling (Świderski et 

al. 2022). To measure the dullness of the examined drills, they tested different 

classification algorithms for machine learning and concluded that Deep learning is one of 

the best three approaches. 

The difference between previous approaches and the methodology of this study is 

in the use of specific techniques for signal adjustment, which makes it suitable for the 

process of machine learning. A similar technique was proposed by Nasir and Cool (2019, 

2020) (a), and Nasir et al. (2019) (b). There has been no such comparison between the 

idling noises of different circular saw blades so far.  The idling noise generated by the blade 

itself is important for further analyses that take into account the interaction between the 

tool and the material. 

  According to Svrzic et al. (2023), it is possible to determine the speed of the 

individual selected tool at three discrete speed values (2000, 3000 and 4000 rpm) with an 

accuracy of 100%. The design of the optimal cutting system with respect to the saw blade 

factors could be achieved through sound signal analysis and decision making. When the 

circular saw blade is idle, the noise is generated solely by the movement of the saw blade. 

This noise could be recorded and analyzed, hopefully providing useful information about 

the circular saw blade in use. However, machining systems also generate a certain amount 

of noise associated with their motors and gears. This noise signal could be processed and 

subjected to a deep learning process that enables machine decision making and process 

monitoring to determine the current state of mechanical correctness of the machining 

system. 

Thus, this research was intended to give a new perspective of process monitoring 

by implementation of sound signal analysis and processing and possibly provide starting 

point for wider base of wood machining sounds repository.  

 

 

EXPERIMENTAL  
 

Freud LU1C 0100, Freud LU2B 0500, and Freud LU2C 1200 circular saw blades 

were used for this study (Fig. 1). The corresponding numbers of teeth were 22, 48, and 80 

respectively. The LU1C 0100 saw blade and the other two have a diameter of 250 mm, an 

internal diameter of 30 mm, a cutting width of 3.2 mm, and a body thickness of 2.2 mm. 

The carbide-tipped tooth shape on the LU1C 0100 is ATB with a 10° positive cutting angle. 
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According to the manufacturer, this blade is intended for longitudinal cutting and cross-

cutting solid wood. The LU2B 0500 blade has ATB-shaped carbide teeth with a 10° 

positive cutting angle and is intended for cutting solid wood and wood-based materials. 

The third blade is the LU2C 1200, which has tungsten carbide (TC), ATB-shaped teeth 

with a 15° positive cutting angle and is designed for rip and cross-cutting softwood, 

hardwood, and wood-based panels. 

The study was conducted in the Laboratory of Machinery and Apparatus at the 

Faculty of Forestry, University of Belgrade (Beograd, Serbia). The machining system used 

for this study was a Minimax CU 410K combined machine (SCM, Rimini, Italy) equipped 

with a 3 kW three-phase asynchronous motor. The speed of the motor was set by a 

customized frequency regulator (F.R. at Fig. 3) to 4000 rpm with a corresponding 

frequency of 50.5 Hz. The noises that occur when the tool is idle were recorded using a 

dbx RTA-M measurement microphone with an electret condenser on the back (Fig. 2a). 

The RTA-M is an omnidirectional, flat frequency measurement microphone specifically 

designed to record all frequencies from 20 Hz to 20 kHz, ensuring accurate "real-time 

"pinking" analysis of the audio signal. It is operated with phantom power. To reduce the 

effects of vibration, the microphone is housed in an anti-vibration rack. The Focusrite 

Scarlet SOLO USB audio interface (Fig. 2b) was connected to a PC. 

 

 
(a) (b) (c) 

 
Fig. 1. FREUD (a) LU1C 0100, (b) LU2B 0500, and (c) LU2C 1200 circular saw blades 

 

Audacity, a cross-platform open source audio software, was used to record the 

audio signals. The signals were sliced and trimmed using the WavePad Sound Editor 

developed by NCH Software. The measurements were carried out at a sampling rate of 

44100 Hz. 

 

  
 (a)       (b) 
 

Fig. 2. (a) RTA-M Measurement microphone; (b) Scarlet SOLO audio interface 
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The microphone was placed 1200 mm away from the rotating tool, as shown in the 

test setup (Fig. 3). 

 
Fig. 3. Experimental setup 

 

The sounds produced during the experiment came from moving machine parts 

(electric motor, bearings, spindles, etc.) and from the whistling of the saw blade. These 

sounds were captured with the microphone and recorded on the PC as wave files. 

Originally, the length of the wave files were 4 minutes for each saw blade speed. Spectral 

analysis was performed on these recordings using the fast Fourier transform (FFT) and the 

short-time Fourier transform (STFT). The use of the FFT alone was not sufficient for a 

detailed analysis, as the power spectra obtained contained a lot of noise or spurious 

frequencies. A further implementation of the STFT, using the Hann’s window function 

with a length of 100 Hz and an overlap of 50% to obtain a spectral density plot, smoothed 

the spectral line considerably and thus showed which spectral regions need to be carefully 

observed. Self-made software was used to perform this task. This is particularly important 

for creating inputs to the database for deep learning networks. In general, there are some 

rules for preparing the raw data: 1) The data must be suitable for the network architecture; 

2) The dimensionality must be reduced so that the patterns become clearer and 3) The data 

must be prepared to cover the entire solution space. All of these steps were performed by 

custom applications created with MATLAB codes, except for the STFT which was done 

by self-made C++ software. 

A further step consisted of cutting the entire 4-minute recording into smaller, even 

parts of 1 second in length, which was done using the WavePad software. Now it was 

possible to create a database for training the deep learning network. The first step was to 

import all 240 short-time recordings of the sound signal for each saw blade speed and 

convert them into 2D images of 3D spectrograms. Spectrograms are reported as 3D plots 

(frequency-time-power) obtained by STFT or wavelet transform of the original sound 

signals. In the 2D representation, an RGB scale is used to represent the power of specific 

peaks or spectral regions. These 2D spectrograms were saved in the JPG format and served 

as training data for the deep learning network GoogleNet Transfer Learning Network, 

which was developed specifically for image recognition. Some adjustments were made in 

terms of the number of classes, the initial learning rate, which was set to 0.0001, the 

validation frequency, the maximum number of epochs, and the percentage of data used for 

validation. 
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RESULTS AND DISCUSSION 
 

Examples of the raw audio signals that were recorded throughout the experiment 

and saved as a wave file are shown in Fig. 4. Based on the signals obtained during the 

recording, it is impossible to predict the behavior of the guide frequencies or to identify a 

reasonable causality of their performance. The only conclusion that can be drawn is that 

the amplitude of the recorded signals is higher in the case of the LU1C blade compared to 

the other two blades. 

To look for a regularity in the sound signals obtained, further steps were taken in 

terms of an FFT application. This procedure should make it possible to resolve the complex 

signal into a certain number of frequencies with the corresponding amplitude values. The 

power spectra determined using FFT are shown in Fig. 5. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 4. Sound signal recorded for: (a) LU1C, (b) LU2B and (c) LU2C circular saw blades 
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(a) 

 
(b) 

 

 
(c) 

 

Fig. 5. Power spectra for (a) LU1C, (b) LU2B. and (c) LU2C circular saw blades 
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The presented power spectra did not attain satisfactory data for further analysis. 

The reason for this lies in the obvious presence of parasitic noise frequencies. The data 

presented in this form did not fulfill requirements for machine learning process. So further 

steps in data processing were done such as obtaining average spectral density by means of 

STFT. After performing that procedure, the graph presented in Fig. 6. gave a much clearer 

picture as to how to extract data in proper form for deep learning network training. The 

distinct amplitude peaks and their corresponding frequencies are also presented in Table 1. 

 
Fig. 6. Average spectral density for three circular saw blades 

 

Table 1. Distinct Amplitude Peaks and their Corresponding Frequencies 
According to STFT 
 

 

Frequency (Hz) 100 1500 1800 2500 2600 3300 3700 

A
m

p
lit

u
d

e
 

(A
.U

.)
 LU1C 15900 57900 / 7300 / 26100 25400 

LU2B 15000 / 5450 / 7030 / / 

LU2C 13920 / 1525 2226 / / / 

 

According to Fig. 6, it was possible to extract two spectral ranges that were of 

interest for further analysis. The first spectral range extended from 0 to about 700 Hz with 

a peak at 100 Hz. The curves for all three saw blades observed overlapped in this range. 

As previously mentioned (Svrzic et al. 2023), this spectral range could be related to the 

noise generated by the machine itself. Since the speed was the same for all saw blades, the 

curves overlapped completely. The second spectral range of interest is from about 1000 Hz 

to about 5000 Hz. The spectral density curves for all three saw blades showed different 

behavior in this range and resulted in different peak values, especially in the case of the 

LU1C saw blade.  
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(a1) (a2) 

 

 
(b1) (b2) 

 

 
(c1) (c2) 

 

Fig. 7. (a1) 2D spectrogram without tick and axes for processed sound signal for the LU1C circular 
saw blade; (a2) 3D spectrogram for processed sound signal for the LU1C circular saw blade; (b1) 
2D spectrogram without tick and axes for processed sound signal for the LU2B circular saw blade; 
(b2) 3D spectrogram for processed sound signal for the LU2B circular saw blade; (c1) 2D 
spectrogram without tick and axes for processed sound signal for the LU2C circular saw blade; 
(c2) 3D spectrogram for processed sound signal for the LU2C circular saw blade 
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This spectral range was associated with the noise generated when the observed 

circular saw blades were idle. The information about the spectral range associated with the 

rotation of the saw blades provided information about to which part of the spectrum 

attention should be paid. For this purpose, a band pass filter in the range of 600 to 6000 Hz 

was applied to all recordings. The filtered signal was subjected to an STFT, which analyzed 

the spectrograms of the signal with a time l second each. The spectrograms shown in Fig. 

7 are a 2D representation of the 3D time-frequency-power diagram, where the power is 

represented as a color on the RGB scale (the warmer the color, the higher the power). 

The purpose of removing ticks, axes, and labels from 2D spectrograms corresponds 

to the mentioned rules for data preparation, which provide only the essential information 

for the deep learning process. The 3D spectrograms shown in Fig. 7 only serve to illustrate 

and explain the 2D spectrograms obtained. 

The random 200 out of a total of 240 2D spectrograms for each of the three circular 

saw blades studied were used for training GoogleNet deep learning network. The remaining 

40 were used to test the trained network. At the end of the training process, the recognition 

accuracy was highly satisfactory at 97.50%, as shown in Fig. 8. 

 

 

Fig. 8. Deep learning network report 

 

In the study, 40 spectrograms were used for each circular saw blade to test the 

trained network. The results showed a recognition accuracy of 100%, which means that the 

trained network could accurately predict which saw blade was used. Such high accuracy 

may be due to the number of testing samples, meaning that the higher number could 

possibly give less accurate results, but certainly not below the achieved 97.50%. The 

accuracy shown in the learning network report is considered sufficient for machine learning 

and decision-making. Further research in this area will include the interaction of a tool 

(circular saw blade) with materials commonly used in woodworking with different cutting 

conditions and different bluntness states of the tool. 
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CONCLUSIONS  
 

1. The sound signal examined in this investigation proved to be a satisfactory data carrier 

for this type of investigation. 

2. The processing of the sound signal provided fairly good information, consistent with 

certain circular saw blades. 

3. From the average spectral density plots, it was quite clear which spectral regions were 

of interest for training the deep learning network. 

4. The spectrograms provided a sufficiently good basis as data for the deep learning 

process. 

5. According to the results of the deep learning network, a validation accuracy of 97.5% 

was achieved, which indicates that this approach can be used for monitoring cutting 

processes in terms of decision making. 

6. It is quite obvious that different circular saw blades with a specific tooth geometry 

produced recognizable noise patterns, resulting in the creation of specific sound 

repositories which could be used by the manufacturers of machining systems and their 

users. The findings of this research implicate the possible use of sound sensors in 

machining systems for monitoring purposes.  

7. However, the results presented refer to the particular environmental conditions. No 

reverberation noise was taken into account. 
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