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The catalytic conversion of biomass into high-value chemicals, such as 
furan derivatives, from 5-hydroxymethylfurfural (HMF) holds significant 
importance. In this study, a bifunctional catalyst prepared from 
phosphomolybdic acid (PMA) and chitosan was developed for the one-pot 
synthesis of 2,5-diformylfuran (DFF) from fructose. This approach offered 
the advantage of bypassing the solvent consumption and cost associated 
with HMF separation and purification for DFF production. The catalytic 
activity of the prepared catalyst primarily originated from the loaded PMA. 
Under optimized reaction conditions, the catalyst achieved a DFF yield of 
approximately 60% after a 6-h reaction at 150 °C or a 1-h reaction at 170 
°C. Moreover, the catalyst exhibited good stability and reusability. These 
results highlight the potential of the bifunctional catalyst for efficient and 
cost-effective conversion of fructose into DFF, enabling practical 
applications in the production of valuable chemicals from bioresources. 
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INTRODUCTION 

 

The utilization of biomass feedstocks to produce high-value chemicals offers a 

promising solution to mitigate environmental pollution and high carbon emissions 

associated with petroleum-based industries. The conversion of biomass into value-added 

chemicals enables the sustainable utilization of renewable resources, reduces dependence 

on fossil fuels, and contributes to the development of a circular economy (Wang and Tester 

2023). Among various biomass conversion reactions, the production of various furan 

derivatives using biomass-based 5-hydroxymethylfurfural (HMF) as a platform chemical 

has garnered significant attention for the valorization of biomass resources. The HMF, 

derived from the dehydration of fructose, possesses active chemical properties that make 

it an excellent precursor for the synthesis of a wide range of furan-based compounds 

(Rosatella et al. 2011). These derivatives find extensive applications across various 

industries, including plastics, pharmaceuticals, and agrochemicals. 

One of the most promising derivatives of HMF is the 2,5-diformylfuran (DFF), 

which can be synthesized through the oxidation of HMF. The DFF serves as a key 

intermediate for the synthesis of a plethora of compounds, including but not limited to, 

polymers, fine chemicals, and even potential biofuels (Cajnko et al. 2020; Slak et al. 2022). 
The synthesis of DFF from HMF predominantly relies on the selective oxidation of the 
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hydroxymethyl group of HMF and various catalysts such as VOPO4.2H2O (Carlini et al. 

2005), Mn-Cs (Solanki et al. 2023), Bi2WO6/mpg–C3N4 (Cheng et al. 2021), V/Mn-1 (Zhu 

et al. 2021), α-MnO2 (Yu et al. 2021), MgO.MnO2.CeO2 (Nocito et al. 2018), 

NH4·V3O8/Fe3O4 (Lai et al. 2019), P−C−N-5-800 (Zhang et al. 2020), and NC-950 (Ren 

et al. 2018). These catalysts have been found to display good performance. DFF synthesis 

via catalytic oxidation of HMF can achieve significant yields, yet the intrinsic reactivity of 

HMF leads to challenging separation and purification processes. These additional steps 

contribute to elevated costs, rendering economically unattractive the industrial-scale 

production of DFF from pure HMF (Trapasso et al. 2022). Moreover, this process is 

environmentally detrimental due to the extensive use of organic solvents.  

 The direct production of DFF from ubiquitously available low-cost carbohydrates 

can overcome these challenges. HMF can be conveniently synthesized through the 

dehydration of fructose. If HMF could be transformed into downstream products in situ 

within the same reaction system, bypassing the need for its separation and purification, it 

would significantly reduce the overall production costs (Šivec et al. 2019). Therefore, this 

study focused on achieving the dehydration of fructose to HMF and oxidation of HMF to 

DFF in the same reaction system, realizing a one-pot synthesis of DFF from fructose. This 

approach not only simplifies the process flow but also minimizes waste generation and 

solvent use, further enhancing the environmental friendliness of the production method. 

The dehydration of fructose to HMF is an acid-catalyzed reaction, whereas the 

conversion of HMF to DFF involves an oxidation process. Currently, there are two 

strategies for integrating these reactions within a single reactor. The first approach employs 

a combination of an acidic catalyst for the dehydration process and a redox catalyst for the 

oxidation of HMF, requiring the initial transformation of fructose to HMF under the acidic 

catalyst. Subsequently, an oxidation catalyst is introduced into the reaction system along 

with oxygen gas or other oxidants to produce DFF. This method, while relatively 

straightforward in implementation, faces challenges in separating the two catalysts after 

the reaction, often necessitating the design of one of the catalysts to be magnetic for ease 

of magnetic recovery and separation (Wei et al. 2021). Moreover, the sequential addition 

of catalysts adds complexity to the operation, a step that is generally unavoidable to prevent 

the oxidative degradation of fructose and low yield of DFF if both catalysts were added at 

the beginning of the reaction. In contrast, the second strategy, which involves the design 

of a bifunctional catalyst capable of catalyzing both the dehydration of fructose and the 

oxidation of HMF, appears more streamlined and efficient. A single catalyst that facilitates 

both reactions can eliminate the issues mentioned above, eliminating the need for separate 

catalyst recovery steps, and simplifying the overall process. However, the design and 

preparation of such a bifunctional catalyst was the key. Currently, successful examples of 

bifunctional catalysts include FeCuPOx, PMA–MIL-101, MoOx/CS, Mo-HNC, CsMVP-

HPA, etc. (Liu et al. 2014a; Zhao et al. 2017, 2018a; Zhou et al. 2018; Jia et al. 2021; 

Nguyen et al. 2024). Among them, heteropolyacids (HPAs) have gained considerable 

attention in the construction of such bifunctional catalysts due to their abundant protonic 

acid sites and metal oxide-like structures. To simplify the preparation of bifunctional 

catalysts, the authors’ idea is to immobilize phosphomolybdic acid (PMA) onto a support, 

thereby forming a stable structured bifunctional catalyst. In this study, the hydrogen 

bonding between PMA and chitosan was utilized to form a cross-linked structure, and then 

a highly dispersed PMA-loaded bifunctional catalyst was obtained through calcination. 

This catalyst was applied in the one-pot synthesis of DFF from fructose, and achieved 

excellent results, offering a more straightforward, efficient, and environmentally friendly 
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approach to the synthesis of valuable chemical intermediates from biomass-derived 

materials.  

 
 
EXPERIMENTAL 
 

Materials 
Fructose, 5-hydroxymethylfurfural (HMF), 2,5-diformylfuran (DFF), phospho-

molybdic acid (PMA), ethanol, dimethylsulfoxide (DMSO), and other materials used in 

the work were obtained in pure form Sigma-Aldrich (Hong Kong S.A.R. China) and were 

used directly without any modification.  

 

Catalyst Synthesis 
Phosphomolybdic acid/chitosan (PMAC) catalysts were synthesized by a facile 

method. Briefly, 2.0 g of chitosan was dissolved in 100 mL of 2% acetic acid (w/v) to 

prepare a solution “A”. Subsequently, 0.05 g of phosphomolybdic acid was dispersed into 

5 mL of H2O to form solution “B”. Afterward, solution “B” was added dropwise into 

solution “A” under a continuous and controlled temperature of 80 °C until entirely 

evaporated. The obtained solid material was collected and further dried overnight in a dry 

oven at 80 °C. Finally, the dried materials were calcined in a muffle furnace at 350 °C for 

10 h to obtain PMAC-1. Likewise, PMAC-2, PMAC-3, and PMAC-4 were prepared 

through the same procedure with different loadings of PMA (PMAC-x, x = 0.1, 0.3, 0.5 g), 

respectively. In addition, chitosan-derived char (CN) was prepared using chitosan without 

PMA following the same procedure. The schematic representation of the prepared catalyst 

is shown in Scheme 1 below. 

 

 
 

Scheme 1. Schematic representation of the preparation process of bifunctional catalyst derived 
from phosphomolybdic acid and chitosan 
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Catalytic Reaction 
Fructose dehydration to HMF 

In a typical dehydration reaction, fructose (200 mg) and 30 mg of the catalyst were 

added to DMSO (5 mL). The mixture was then poured into a round-bottom flask equipped 

with a reflex condenser, which was placed in a thermostatic oil bath under controlled 

temperature (90 °C) and stirring (500 rpm) for the desired reaction time (0.5 to 2 h). After 

the reaction, samples were taken at a specified time from the reaction mixture for 

quantification of reaction products.   

 

HMF oxidation to DFF 

In a typical oxidation reaction of HMF to DFF, 63 mg of HMF, and 30 mg of the 

catalyst were added to DMSO (5 mL). The mixture was then poured into a 3-necked round 

bottom flask equipped with a reflex condenser and was placed in a thermostatic oil bath 

under a controlled temperature of 140 °C and a constant oxygen flow of 10 mL/min was 

maintained for a specific time. Samples were taken from the reaction mixture at the desired 

time (1, 2, and 6 h) for product analysis. 

 

One pot and one-step conversion of fructose to DFF  

In a one-pot and single-step conversion of fructose DFF, 63 mg of HMF, and 30 

mg of the catalyst were added to DMSO (5 mL). The mixture was then poured into a 3-

necked round bottom flask equipped with a reflex condenser and was placed in a 

thermostatic oil bath under a controlled temperature of 130 °C and a constant oxygen flow 

of 10 mL/min was maintained for a specific time. Samples were taken from the reaction 

mixture at the desired time (1, 2, and 6 h) for product analysis. 

 

Products Analysis  
After the reaction, the solids were removed via centrifugation, filtered with a 0.25 

µm syringe filter, and analyzed by high-performance liquid chromatography (HPLC) 

equipped with a refractive index detector (RID detector Agilent Technologies, 1260 

Infinity II). For the analysis of fructose, HMF, and DFF, an organic acid detection column 

HPX-87H Bio-Rad was used under isocratic conditions. The mobile phase was 5 mM 

H2SO4 aqueous solution at a flow rate of 0.6 mL/ min and the column temperature was set 

to 60 °C.  

The fructose conversion, HMF yield, DFF yield, HMF conversion, and DFF yield 

from HMF were calculated using the following Eqs. 1 through 5, respectively, 

𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
[𝐹]0−[𝐹]𝑡

[𝐹]0
× 100%     (1) 

𝐻𝑀𝐹 𝑦𝑖𝑒𝑙𝑑 𝑓𝑟𝑜𝑚 𝑓𝑟𝑢𝑐𝑡𝑜𝑠𝑒 =
[𝐻𝑀𝐹]𝑡

[𝐹]0
× 100%     (2) 

𝐷𝐹𝐹 𝑌𝑖𝑒𝑙𝑑 𝐹𝑟𝑜𝑚 𝑓𝑟𝑢𝑡𝑜𝑠𝑒 =
[𝐷𝐹𝐹]𝑡

[𝐹]0
× 100%     (3) 

𝐻𝑀𝐹 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
[𝐻𝑀𝐹]0−[𝐻𝑀𝐹]𝑡

[𝐻𝑀𝐹]0
× 100%     (4) 

𝐷𝐹𝐹 𝑌𝑖𝑒𝑙𝑑 𝐹𝑟𝑜𝑚 𝐻𝑀𝐹 =
[𝐷𝐹𝐹]𝑡

[𝐻𝑀𝐹]0
× 100%     (5) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑋 (𝑋=𝐻𝑀𝐹 𝑜𝑟 𝐷𝐹𝐹)

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑌 (𝑌=𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 𝑜𝑟 𝐻𝑀𝐹)
× 100       (6) 
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where [F]0 and [HMF]0 represent the initial concentration of fructose and HMF as substrate 

at the beginning of the reaction, while [F]t, [HMF]t, and [DFF]t represent the remaining 

concentration of fructose, HMF, and DFF after the reaction time of t, respectively. 

 

Material Characterization 
The structural characterization of all prepared catalysts was completed using Field 

Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis 

(FESEM/EDX, LEO 1530 Field Emission SEM (ZEISS, Germany) and transmission 

electron microscopy (TEM) using FEI Tecnai G2 F20 S-Twin (FEI Company, Hillsboro, 

OR, USA). Surface composition and different functional groups of all the catalysts were 

confirmed through Fourier-transform infrared spectroscopy (FTIR, Nicolet iS 5 FTIR 

spectrometer, Natick, MA, USA), and Raman spectra for the catalyst were recorded using 

a ThermoFisher DXR2x instrument (Waltham, MA, USA). 

 
 
RESULTS AND DISCUSSION 
 

Catalyst Characterization 

The synthesis process of PMAC catalyst consists of two stages. The first stage 

involves the crosslinking of PMA and chitosan in a solution to form a complex. The second 

stage involves the drying and calcination of this complex to form a stable structure. The 

process in the first stage aids in the dispersion of PMA, thereby enhancing its dispersibility 

in the final catalyst and enabling more effective utilization of its catalytic active sites. The 

structural changes of PMA and chitosan mainly occurred in the second stage, where PMA 

underwent dehydration due to calcination, while chitosan underwent carbonization. The 

morphology of the catalyst, as depicted in Fig. 1a through 1f using FESEM images, 

revealed that the carbon material produced by chitosan after calcination exhibited an 

irregular block shape, with a relatively flat and clean surface. Upon combination with PMA 

and subsequent calcination, the surface became rough, exhibiting distinct cracks and the 

presence of numerous particles. There were no obvious changes in the morphologies of the 

PMAC catalyst before and after use. Figure 1g through 1i shows the TEM images of CN, 

PMAC-3, and the used PMAC-3. The CN exhibited a layered structure, PMAC-3, and the 

used PMAC-3 showed a similar structure, where no aggregated PMA particles were 

observed. This is further supported by EDS data (Fig. 1j through 1o), which showed a 

homogeneous distribution of Mo and P within the catalyst particles. These results 

demonstrated the effectiveness of the synthesis strategy involving the crosslinking of PMA 

and chitosan followed by calcination in controlling the dispersibility of PMA.  

Figure 2a displays the XRD patterns of the catalyst. Characteristically, polymers 

with crystalline regions can diffract high-intensity sharp peaks, whereas the X-ray peaks 

for amorphous polymers are much broader. It can be seen in Fig. 2a that the carbon material 

derived from chitosan revealed a broad peak centered around 20 to 30° in the 2θ range, 

indicating the presence of an amorphous carbon structure (Kalaiselvimary and Prabhu 

2019; Kong et al. 2012). The peak corresponding to chitosan at 25º exhibited reduced 

intensity and shifted towards 30° in the XRD spectrum of the PMAC samples, suggesting 

that the introduction of PMA influenced the arrangement of carbon atoms (Tong et al. 

2017: Yu et al. 2014; Sadjadi et al. 2023). Moreover, the distinguished peaks at 2θ values 

of ~10º and ~25º were only present in PMAC samples indicating the existence of PMA 

(Ahmadian and Anbia 2023).   
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Fig. 1. FESEM images of catalysts (a) CN, (b) PMAC-1, (c) PMAC-2, (d) PMAC-3, (e) PMAC-4, (f) 
used PMAC-3, and TEM images of catalyst (g) CN, (h) PMAC-3, (i) used PMAC-3, and EDS of 
catalyst (j to o) PMSC-3 
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Fig. 2. (a) XRD patterns, (b) FTIR patterns, and (c) Raman spectrum of CN and PMAC catalysts  

 

Further, Fig. 2b shows the similarities and differences in the FTIR pattern of the 

samples. All the samples showed three peaks at 1620, 1400, and 1060 cm-1, respectively. 

The absorbance peak at 1620 cm-1 corresponds to the stretching vibrations of C=O bonds, 

indicating the presence of carbonyl functional groups in the samples. The peak located at 

1400 cm-1 was associated with the bending vibrations of the methyl or methylene groups 

The absorbance peak at 1060 cm-1 can be attributed to the stretching vibrations of C-O 

bonds, indicating the presence of oxygen-containing functional groups in the samples. 

These functional groups were from the chitosan-derived char (CN). In addition to these 

two peaks, the PMAC samples showed some unique peaks that belong to the PMA species. 

According to the results reported in the literature, the three absorption peaks at 960, 870, 

and 796 cm-1 are assigned to stretching vibrations (ν (P-O), ν (Mo-Ot), ν (Mo-Oc-Mo), ν 

(Mo-Oe-Mo), where Ot, Oc, and Oe refer to terminal, corner, and edge oxygen (Mishra et al. 

2010; Santamaria et al. 2017). The XRD and FTIR results confirmed the composite 

structure of the PMAC catalysts. 

The Raman spectra of CN and PMAC-3 are shown in Fig. 2c. Both curves showed 

Raman peaks at around 1320 and 1600 cm-1, which were attributed to the D band and G 

band, respectively, of the support material (Lei et al. 2022). For the PMAC-3 curve, an 

extra absorption peak around 1004 cm-1 was observed, which was ascribed to the stretching 

vibrations of (Mo= O) which also revealed that PMA was successfully embedded in 

chitosan (Baibarac et al. 2011). 

 

Catalytic Dehydration of Fructose to HMF  
 The synthesized catalysts were initially screened for their catalytic activity of 

fructose dehydration to HMF. Herein, DMSO was used as the solvent because of its innate 

behavior of promoting strong acid sites, which could be effective in converting fructose to 

HMF (Laugel et al. 2014; Tomer and Biswas 2022). Moreover, propagation towards side 

reactions and humins formation in DMSO is more suppressed, making it an ideal solvent 

for the dehydration of fructose and stabilization of HMF (Qi et al. 2008; Mushrif et al. 

2012). The conversion of fructose to HMF concerning reaction time and different PMA 

loadings was studied by all synthesized catalysts. Figure 3 depicts the results of fructose 

conversion to HMF over different catalysts. Notable HMF yields of 41.7%, 45.4%, 68.7%, 

and 66.7% were observed even at a short reaction time of 1 h over PMAC-1, PMAC-2, 

PMAC-3, and PMAC-4, respectively. Meanwhile, HMF yield was only 4.5% when CN 

was used as the catalyst under the same reaction conditions. Similar findings were reported 

by Chhabra et al. (2023), who found that increasing the PMA loadings in boron nitride 

(BN) resulted in an 8% increase in HMF yield, whereas using only BN as a catalyst resulted 
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in a significantly lower yield. Likewise, Saghandali et al. (2023) obtained an increased 

HMF yield of 99.5% from fructose in 45 minutes in DMSO solvent by employing 

halloysite-supported silicotungstic acid as a catalyst. Both fructose conversion and HMF 

yield increased with PMA loadings in chitosan suggesting that more acidic sites were 

introduced to the CN due to increased PMA, which played a crucial role in the fructose 

dehydration reaction (Chhabra et al. 2023). Considering the slight decrease in HMF 

selectivity from PMAC-3 to PMAC-4, the effects were probably due to the further 

hydrolysis or degradation of HMF. These findings are consistent with previous research. 

Wang et al. (2014) reported that raising the catalyst dosage from 8 to 10 mg reduced HMF 

yield by 2%, and a further decrease in HMF by 7% was seen when the catalyst dose was 

increased to 20 mg. The high amounts of catalyst can efficiently cause the degradation and 

polymerization of HMF to produce byproducts and humins. Thus, optimum loading is 

critical for achieving efficient product yields. Based on the results, PMAC-3 seems to be 

the optimal catalyst for fructose to HMF transformation (Zhou et al. 2015).  
 

 

Fig. 3. Catalytic dehydration of fructose to HMF over CN and PMAC catalyst; Reaction 
conditions: 30 mg catalyst, 200 mg fructose, 5 mL DMSO, 90 °C, and 1 h 

 

Catalytic HMF Oxidation to DFF  
Heteropolyacid (HPA), such as Keggin-type phosphomolybdate acid (HPMo, 

H3PMo12O40), has been widely explored as a promising catalyst for oxidation reactions 

(Lei et al. 2021; Zhou et al. 2022; Ping et al. 2023). Such materials are mostly composed 

of numerous oxygen species in different coordination, including tetrahedral oxygen, 

bridging oxygen, and terminal oxygen.  
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Fig. 4. Catalytic oxidation of HMF into DFF over CN and PMAC catalysts; Reaction conditions: 30 
mg catalyst, 63 mg HMF, 5 mL DMSO, 140 °C, and 4 h 
 

The shuffling of terminal oxygen species may induce the formation of oxygen 

vacancies and low-coordination cations (Mo5+ or MO+6) in the lattice, which might be 

effective in catalyzing oxidation reactions (Xiao et al. 2013; Chang et al. 2020). Recently, 

Keggin-type heteropolyacid has been explored as a potential catalyst for HMF oxidation 

to DFF (Zhao et al. 2017; Liu et al. 2019; Wang et al. 2021). Based on this evidence, the 

role of PMAC in the aerobic oxidation of HMF to DFF was investigated, and the results 

are shown in Fig. 4. The CN showed limited catalytic activity towards HMF oxidation. 

After loading with PMA, the PMAC showed considerably improved catalytic activity. 

With PMAC-1 acting as a catalyst, a 39.4% DFF yield and a 42.2% HMF conversion were 

attained; moreover, both the DFF yield and HMF conversion rose with increased PMA 

loading onto chitosan. When PMAC-4 was used as a catalyst, the DFF yield reached a 

maximum of 73.4% with 80.8% HMF conversion at 140 °C in 4 h. Nevertheless, it is worth 

mentioning that the DFF selectivity was slightly compromised by introducing higher PMA 

loadings to the catalyst, and above 90%, DFF selectivity was achievable with all PMAC 

catalysts. The results demonstrated that high loading of PMA, as it was in PMAC-3 and 

PMAC-4, was necessary for the high catalytic activity. 
 

One-pot Synthesis of DFF from Fructose 
After systematic evaluation of the PMAC catalysts for subsequent fructose 

dehydration and HMF oxidation, the catalysts were further evaluated as bifunctional 

catalysts for “one-pot, one-step” direct conversion of fructose to DFF under specified 

reaction conditions. The experimental results are depicted in Fig. 5.   
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Fig. 5. Catalytic one pot and one step conversion of fructose into DFF over PMA catalyst (a) PMAC-
1, (b) PMAC-2, (c) PMAC-3, and (d) PMAC-4. Reaction conditions: 30 mg catalyst, 200 mg fructose, 
DMSO (5 mL), O2 (10 mL/min), temperature 130 °C, and time (1 h, 2 h, and 6 h) 
 

It was noted that with a shorter reaction time (1 h) fructose was quickly dehydrated 

to HMF with a maximum yield reaching 67.6% over the PMAC-3 catalyst and only 4.4% 

DFF yield was achievable at this stage. However, with extended reaction time (6 h) a switch 

to HMF oxidation was observed and an obvious DFF yield of 31.2% was achieved while 

HMF yield was reduced to 33.8% for PMAC-3. Similar trends were also shown for other 

catalysts. For example, HMF yield reduced from 50% to 30% and DFF yield increased 

from 4.49% to 32.2% from a reaction time of 1 h to 6 h using PMAC-4 as a catalyst. 

Meanwhile, the DFF yield increased faster when PMA loading was higher in the catalyst 

from PMAC-1 to PMAC-4, which again confirmed the PMCA’s activity in HMF oxidation 

to DFF. However, it seems that the PMA loading in PMAC-4 was higher than the optimized 

loading evidenced by the decrease in DFF selectivity in HMF oxidation and a certain 

degree of side reactions in the fructose dehydration stage which negatively affected the 

HMF yield. Therefore, PMAC-3 was selected and used in the further optimization of the 

reaction parameters with the expectation of higher DFF yield. 

To achieve the highest DFF yield directly from fructose in a “one pot and one-step 

process”, the authors further screened the activity of PMAC-3 under different temperatures 

correlated to the reaction time (Fig. 6).  
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Fig. 6. Effect of reaction temperature and time on catalytic one-pot and one-step conversion of 
fructose into DFF over PMAC-3 catalyst (a) HMF yield, (b) DFF yield; Reaction conditions: 30 mg 
catalyst, 200 mg fructose, DMSO (5 mL), O2 = 10 mL/min, and time (1 h, 2 h, and 6 h) 
 

Overall, the results indicate that the consecutive reaction from fructose to HMF and 

then to DFF can be effectively completed in this system, as evidenced by the decrease in 

HMF yield and the increase in DFF yield over time. Comparing the reaction data at 

different temperatures, it can be observed that higher temperatures favor the reaction. For 

instance, when the reaction was conducted at 110 ℃, the HMF yield decreased only about 

10% from 1 h to 6 h. However, at 130 ℃, the HMF yield decreased approximately 30% 

over the same time, and further, this value reached 45% when the reaction temperature 

reached 150 ℃. The decrease in HMF yield corresponded to an increase in DFF yield. It 

is noteworthy that when the reaction was performed at 170 ℃, even after only 1 h, DFF 

became the major product with a yield of 60.4%. However, with a further increase in 

reaction time, the DFF yield began to decrease due to over-oxidation or decomposition of 

DFF. These reaction results demonstrate the effectiveness of PMAC-3 in the one-pot 

synthesis of DFF from fructose. It can be concluded that lower temperature and shorter 

reaction times favored higher HMF production and less DFF yields, in contrast, elevated 

reaction temperature favored oxidation of HMF and higher DFF yields. The authors’ results 

of this study are remarkably improved compared to previous reports (Table 1), with the 

activity of the PMAC-3 catalyst being comparable to or even higher than reported catalysts 

for one-pot fructose conversion to DFF under environmentally friendly reaction conditions. 

 The conversion process of fructose to DFF exploiting the PMAC catalyst in a 

DMSO environment is depicted in Fig 7. The proton generated by PMA ionization is the 

primary active species for fructose dehydration. Its interaction with fructose leads to the 

formation of isomeric intermediates (α and β-furanose), which subsequently lose a water 

molecule to create a carbocation that eventually yields HMF. The PMAC catalyst, which 

features oxidizable molybdenum (Mo) sites, then engages with HMF's hydroxyl group to 

produce an intermediate (alkoxyl intermediate). These intermediates experience a β-

elimination process, resulting in the formation of the carbonyl compound 2,5-

diformylfuran (DFF), while simultaneously releasing molybdenum dihydride. In the final 

step, the molybdenum dihydride is reoxidized by molecular oxygen, which regenerates the 

active catalyst and releases a water molecule (Amarasekara et al. 2008; Shimizu et al. 2009; 
Ghezali et al. 2015; Ren et al. 2016; Chen et al. 2019, Chen et al. 2022). 
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Fig. 7. Proposed reaction mechanism for one pot single step fructose conversion into 2,5-
diformylfuran over PMAC catalyst  
 

Catalyst Recycling Test 
Catalyst recycling is of great importance in the field of heterologous catalysis. 

Therefore, the reusability and stability of PMAC-3 were investigated for one-pot and one-

step conversion of fructose into DFF. After each cycle, the spent catalyst was separated 

from the reaction mixture through centrifugation, washed sufficiently with ethanol and 

deionized water, and then dried in an oven at 60 °C before using in a subsequent cycle. The 

PMAC-3 catalyst retained its overall catalytic performance towards DFF production 

without any prominent loss in its catalytic performance (Fig. 8). After three times of use, 

there was a slight increase in HMF yield and a decrease in DFF yield by about 10%. The 

authors speculated that the loss of DFF could be attributed to the leaching of Mo active due 

to the extensive stirring in the recycling reaction causing the liberation of PMA fine 

particles from the catalyst (Wu et al. 2021). Secondly, the reduction in the amount of 

catalyst after recycling could also contribute to the decrease in DFF yield.  
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Fig. 8. Reusability of PMAC-3 catalyst for one-pot and one-step conversion of fructose into DFF; 
Reaction conditions: 30 mg catalyst, 200 mg fructose, DMSO (5 mL), O2 (10 mL/min), 
temperature (150 °C), and time (2 h) 

 

Table 1. Comparison of Catalysts for One-Pot Synthesis of DFF from Fructose 

 

The reduction in catalyst amount upon recycling mostly affects the oxidation of 

HMF to DFF because fructose dehydrates quickly to HMF, and a longer reaction time could 

be sufficient for the complete conversion of fructose. This causes the quantity of HMF to 

stay in the reaction products to increase, which lowers the DFF yield (Fig. 7). In general, 

Entry Catalyst 
Temperature 

(°C) 
T (h) 

DFF 
Yield (%) 

Oxidant Reference 

1 Graphene oxide- 
360 mg 

140 24 53 N2 and O2 Lv et al. (2016) 

2 MOF-derived 
Fe3O4 (111) 

120 120 72 N2 (1 bar) for 2 
h, O2 (1 bar) for 

3 h 

Fang et al. 
(2017) 

3 40-PMo12/F3-PAN 140 7 76.7 air Liu et al. (2019) 

4 NaBr 150 23 67.0 O2 atmosphere Laugel et al. 
(2014) 

5 GN-NS 150 25 70.3 O2 (20 mL/min) Zhao et al. 
(2020) 

6 MoO3–ZrO2 150 10 74.0 O2 (20 mL/min) Zhao et al. 
(2018b) 

7 HBr 50 12 42.1 12 h, O2 (1 atm), 
light, MeCN 

Hu et al. (2021) 

8 Cr-MIL-101 150 7 75.1 O2 (20 mL/min) Zhao et al. 
(2017) 

9 CsH3PMo11VO40 110 8 60 O2 (0.1Mpa) Liu et al. 
(2014a) 

10 PMA_3 170 1 60.4 O2 (20 mL/min) This work 
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the PMAC-3 showed its reusability and the slight decrease in the conversion of HMF to 

DFF could be overcome by modestly extending the reaction time. 

 
 
CONCLUSIONS 

 

1. This study provides a facile method for the preparation of a bifunctional catalyst for 

the one-pot conversion of fructose to 2,5-diformylfuran (DFF). The method utilized 

phospho-molybdic acid (PMA) and chitosan as the main raw materials and employed 

their cross-linked structure based on hydrogen bonding as a precursor, which was then 

stabilized through calcination to obtain the catalyst. This method effectively enhanced 

the dispersion of PMA on the catalyst, thereby improving its catalytic activity.  

2. The catalyst exhibited excellent performance in both the conversion of fructose to 5-

hydroxymethylfurfural (HMF) and the oxidation of HMF to DFF, which were 

inaccessible without PMA loading. However, excessively high PMA loading 

negatively affected the selectivity of fructose dehydration to HMF and HMF oxidation 

to DFF.  

3. In the one-pot conversion of fructose to DFF, the conversion of fructose to HMF can 

be rapidly completed, leading to the subsequent oxidation of HMF to DFF. Through 

optimization of the reaction conditions, the catalyst achieved a DFF yield of 

approximately 60% when reacted for 6 h at 150 °C or for 1 h at 170 °C.  

4. Furthermore, the catalyst demonstrated good stability and could be recycled and reused. 

The facile preparation method and high catalytic performance of this catalyst hold 

promising potential for industrial-scale applications in biomass catalytic utilization. 
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