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INTRODUCTION 
 

 To cope with the dual pressures of increasing energy demand and environmental 

pollution caused by fossil fuels worldwide, biomass has received much attention as one of 

the most abundant and promising renewable raw materials (Antar et al. 2021; Hassan et al. 

2024). The global biomass reservoir stands at an impressive 540 million tons of standard 

coal, with 280 million tons suitable for energy production (Xu et al. 2021). Biomass lends 

itself to conversion into bioenergy through biological and thermochemical means (Wang 

and Wu 2023).  

 Pyrolysis is the dominant technology for converting solid biomass into bio-oils, 

gaseous products and biochar in anoxic or anoxic environments. Among them, biochar has 

been used in multidisciplinary fields in recent years due to its high surface area, rich carbon 

content, and surface functional groups (Li et al. 2023). The yield and characteristics of 

biochar are affected by the nature of the biomass and the specific situation of the pyrolysis 

process, and biochar with different characteristics has corresponding applications. Notably, 

the most favorable settings for biochar manufacture are not universal but are tailored to the 

specific biochar attributes and intended end-uses sought after (Tomczyk et al. 2020). 

Safarian (2023) conducted an extensive review of numerous environmentally sustainable 

techniques for biochar generation, examining them through the lens of process efficiency. 

Their findings highlighted a substantial variation in both the output quantities and the 
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qualitative features of the products derived from thermochemical biomass conversion 

methods. This observed disparity can largely be attributed to disparities in raw material 

compositions (feedstocks), operational parameters, and the specific methodologies 

employed during application (Safarian 2023). The studies of Leng and Huang (2018) 

further revealed that the variables in biochar manufacturing, encompassing the 

composition and traits of the original biomass as well as the precise pyrolysis 

circumstances, exert diverse impacts on the resultant biochar stability. Of these factors, the 

pyrolysis temperature emerges as the paramount determinant in regulating biochar 

stability. Elevated temperatures during processing render biochar notably consistent, 

accomplishing the biomass variety and supplementary pyrolysis conditions 

inconsequential. Conversely, in scenarios where milder temperatures are employed, 

alternative process parameters assume a more significant role in influencing biochar 

stability (Leng and Huang 2018). As a result, scholars have delved into biochar 

manufacturing processes that use large amounts of biomass and sought strategies to 

increase biochar production to meet industrial demand. While focusing on the critical role 

of biochar in carbon capture and sequestration, the focus is not just on maximizing yield; 

the carbon content of biochar itself is equally important, underscoring the dual focus of 

research efforts (Deng et al. 2024).  

 Measuring these properties with traditional analytical methods proves complex, 

time-consuming, and resource-intensive. Additionally, understanding optimal conditions 

and mechanisms for biochar production and utilization remains elusive, with few 

comprehensive studies on biomass characteristics and process parameters' effects on 

biochar properties. Biomass comprises cellulose, hemicellulose, and lignin, reacting 

differently during pyrolysis based on temperature and time (Chen et al. 2022). The process 

of biomass pyrolysis encompasses intricate transformations, both chemical and physical, 

including dehydration and depolymerization, which significantly mold the biochar's 

characteristics, notably its elemental composition and pH (Vuppaladadiyam et al. 2023). 

Nonetheless, deciphering the complexity of biomass pyrolysis remains a formidable task, 

owing to the intricate, non-linear correlations that exist between the inherent qualities of 

the biomass and the resultant biochar characteristics. Current biomass pyrolysis models 

lack reliability and generalizability due to limited experimental data. Consequently, 

employing big data analytics, machine learning algorithms, and data mining techniques to 

scrutinize the pyrolysis behavior of materials, in conjunction with a thorough examination 

of the original feedstock attributes and pyrolysis parameters, is vital for conducting a 

comprehensive evaluation of how these variables collectively impact biochar output and 

elemental composition (Zhu et al. 2019).  

 Machine learning is capable of finding patterns and extracting insights from large 

data sets. By using historical data on feedstock properties, process conditions, and 

properties of the resulting biochar, machine learning models can learn and predict how 

changes in input parameters affect output metrics. This not only deepens our understanding 

of the basic mechanisms of biochar production, but also empowers stakeholders to optimize 

processes, thereby increasing efficiency and reducing costs. RF and XGBoost both fall 

within the realm of Ensemble Learning, which enhances the generalization and robustness 

of a solitary learner by integrating the predictions of multiple base learners for predicting 

complex nonlinear targets in engineering. Although RF is more frequently used to simulate 

pyrolysis, XGBoost has higher efficiency and could reduce over-fitting (Cruz et al. 2022; 

Yang et al. 2023). 
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 The yield of biochar helps to assess the commercial practicality and scalability of 

the manufacturing process, and the carbon content is closely related to the carbon capture 

capacity of the material and its continuous enhancement of soil health over time. In this 

study, two advanced machine learning algorithms, RF and XGBoost, were used to verify 

their efficacy in predicting biochar yield and carbon content and to explore the different 

significance of factors such as raw material properties and pyrolysis environment during 

pyrolysis. With the XGBoost model providing accurate predictions and revealing new 

perspectives behind those predictions, this study provides a comprehensive understanding 

of biochar production through biomass pyrolysis, thereby providing engineers with 

strategic directions for optimizing biochar yield or its carbon enrichment. 

 

 
MATERIALS AND METHODS 
 
Data Collection and Preprocessing 

 During data collection and preprocessing, searches were conducted on Web of 

Sciences using the keywords “biochar” and “pyrolysis”. This extensive exploration led to 

the assembly of 355 different datasets from a compilation of 23 academic publications that 

are the basis for building our data-intensive predictive model, summarized in 

“Supplementary Materials”. 

 To ensure broad applicability, the analysis encompassed a range of biochar 

attributes, specifically: (1) Elemental composition comprising carbon (C), hydrogen (H), 

oxygen (O), nitrogen (N), sulfur (S), fixed carbon (FC), volatile matter (VM), and Ash 

content.; (2) Lignocellulosic composition, including cellulose (CL), hemicellulose (HC), 

and lignin (LG); (3) Characteristics of the biomass feedstock, such as type and sample mass 

(SM); (4) Pyrolysis operational parameters, namely reaction temperature (Temp), 

residence time (RT), and heating rate (HR); (5) Yield of the resulting biochar and its Higher 

heating value (HHV). However, certain variables were deliberately excluded from the 

machine learning model. These variables had minimal impact on the torrefaction process 

and including them would unduly complicate the model structure and elevate 

computational challenges without significant benefit. 

 In instances where data availability ranged from over 80% to below 100% for both 

inputs and outputs, the missing entries were supplanted with the average values pertinent 

to each respective variable. Consequently, the refined dataset employed for model 

development comprised 15 predictor variables—pertaining to the composition of biomass 

feedstock and pyrolysis conditions, including H, O, N, S, FC, VM, ash content, CL, HC, 

LG, SM, HHV, Temp, RT, and HR—and 2 response output variables associated with 

biochar characteristics (carbon content and yield). Prior to modelling, the dataset 

underwent preprocessing to identify and address any missing or duplicated records. To 

ensure data integrity, a dual approach combining Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), a robust clustering technique, and the Isolation Forest 

(iForest) algorithm, rooted in decision tree models, was implemented to identify, and 

exclude outliers. Given the notable variability and unstable distribution of Heating Rate 

(HR), Residence Time (RT), and Sample Mass (SM), which could potentially undermine 

model performance or hinder convergence, as per Zhou et al. (2021), these variables were 

omitted. Thus, the final dataset tailored for model construction consisted of 12 predictor 

variables linked to biomass feedstock composition and torrefaction parameters (H, O, N, 
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S, FC, VM, Ash, CL, HC, LG, HHV, and Temp) and maintained the same 2 output 

variables linked to biochar attributes (Carbon content and biochar yield). 

 Considering the extensive variation and scales across different feature dimensions, 

the dataset underwent preprocessing with StandardScaler from the scikit-learn library in 

Python to standardize the variables, adhering to the methodology outlined by Pedregosa et 

al. (2011). Furthermore, to delve into the relationships between the predictors and the 

predicted outcomes, Pearson’s Correlation Coefficient (PCC) was employed. With the aim 

to facilitate quicker algorithm convergence and enhance prediction accuracy by achieving 

a consistent scale among all variables, the empirical dataset was subjected to Min-Max 

normalization, transforming values to fall within the interval of 0 to 1, utilizing Eq. 1 for 

this transformation process. 

         𝑋𝑖
′ =

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                                                    (1) 

where Xi is the value of the input feature; Xi' is the normalized value of initial Xi; Xmin, and 

Xmax are the minimum and maximum values of Xi, respectively. 

 

Construction and Evaluation of Machine Learning Models 
 In this study, two machine learning algorithms were employed, namely XGBoost 

and Random Forest (RF), to construct models predicting carbon content and biochar yield. 

These models utilized 17 different variables as input features. The implementation of these 

algorithms was facilitated through Python, leveraging libraries such as sklearn for general 

machine learning tasks, XGBoost specifically for the XGBoost algorithm, and keras for 

potential deep learning components. Prior to the modeling process, the dataset was divided 

randomly into two subsets: 80% of the data was allocated for training the models, while 

the remaining 20% served as a test dataset to assess the predictive accuracy of the models 

developed. 

 In order to refine the predictive power of our machine learning models, a 5-fold 

cross-validation methodology was adopted to calibrate hyperparameters during the training 

phase. The XGBoost model is grounded in the Gradient Boosting Decision Tree (GBDT) 

algorithm, which is renowned for its capability to adeptly and proficiently manage both 

regression and classification tasks. The hyperparameter tuning process for XGBoost 

entailed meticulous consideration of key elements such as the quantity of decision trees, 

the utmost tree depth, and the learning rate (Chen and Guestrin 2016). Concurrently, 

Random Forest (RF), as another decision tree-driven machine learning architecture, delves 

into the intricate, nonlinear correlations between inputs and outputs. Hyperparameter 

optimization for RF was carried out by carefully modulating the count and the maximal 

depth of the decision trees, thereby further enhancing model performance (Breiman 2001). 

 Post hyperparameter optimization, the machine learning models underwent 

retraining with the designated training dataset to derive the most efficacious versions 

capable of precisely forecasting carbon content and biochar yield. To rigorously assess the 

predictive precision and the broader applicability of these finely-tuned models, a trio of 

metrics was employed: the coefficient of determination (R2) for goodness of fit, the root 

mean square error (RMSE) to quantify prediction errors, and the mean squared error (MSE) 

to offer a complementary perspective on the models' accuracy, all utilizing the separate test 

dataset. The R2, RMSE, and MSE were calculated with Eqs. 2, 3, and 4, respectively. 

𝑅2 = 1 −  
∑ (𝒚𝒊−𝒚𝒊̂)𝟐𝒏

𝒊

∑ (𝒚𝒊−𝒚𝒊̅)𝟐𝒏
𝒊

                                                 (2) 
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𝑅𝑀𝑆𝐸 = √
∑ (𝒚𝒊−𝒚𝒊̂)𝟐𝒏

𝒊

𝒏
                                                (3) 

𝑀𝑆𝐸 =
∑ (𝒚𝒊−𝒚𝒊̂)𝟐𝒏

𝒊

𝒏
                                                      (4) 

where n is the number of total data points for the training set or testing set; yi is the 

experimental value of the output variable; 𝑦𝑖̂ is the corresponding predicted value; 𝑦𝑖̅ is the 

average value of output variable. 

 

Method for Feature Importance Analysis 
 In an effort to decipher the relative significance and interplay among diverse input 

variables affecting the output in inherently opaque machine learning models, a feature 

importance analysis was initiated to illuminate the pivotal aspects governing the intricate 

biological mechanisms at play. This investigation employed the Shepley Additive 

Explanations (SHAP), a game-theoretic explanation framework for machine learning, to 

systematically rank and assess these features. The SHAP analysis methodically attributed 

an individual, quantifiable measure of predicted importance to every input feature, thereby 

encapsulating its localized impact on the prediction of the output variable (Lundberg and 

Lee 2017).  

 Features were deemed more influential in forecasting the carbon content and 

biochar yield within the biochar pyrolysis system as their positive importance values 

escalated, signifying a stronger predictive contribution. Conversely, a feature associated 

with a negative importance value suggested that randomizing this variable could potentially 

enhance prediction outcomes. Additionally, features with an importance score nearing zero 

had a negligible impact on the overall model performance, indicating their limited 

relevance to the prediction task. 

 

 

RESULTS AND DISCUSSION 
 
Statistical Analysis of Multiple Variables 

 An ensemble of 355 datasets was assembled from 23 publications documenting the 

proximate composition of biomass, pyrolysis parameters, and the elemental composition, 

yield, and Higher Heating Value (HHV) of derived biochars. Figure 1 illustrates the span 

of this amassed data. Analysis of these datasets showed the typical carbon and oxygen 

concentrations in biomass to be 54.81 wt% and 34.88 wt%, respectively, implying a slight 

dominance of carbon. Characteristically, biomass is rich in volatile matter (VM) yet scant 

in ash, averaging an HHV around 20.41 MJ/kg. Regarding the chemical composition, 

lignin content across samples varied widely, primarily spanning from 1.4% to 98.64%. 

Cellulose and hemicellulose fractions, both composed of carbohydrate structures, ranged 

from 0.07% to 57.39% and 0.86% to 56.29%, respectively. Notably, lignin, distinguished 

by its aromatic structure, exhibited the greatest thermal stability among these components. 

Pyrolysis temperatures reported varied extensively from 180 to 900 °C, with most studies 

concentrating within the 200 to 300 °C range. Residence times (RT) were typically brief, 

extending from 1.0 min to 2 h, though certain experiments prolonged RTs to enhance 

biochar uniformity. The aggregate mean yield of biochar production was recorded at 56.2 

wt%. 
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 According to the Pearson correlation coefficient matrix depicted in Fig. 2, the 

strength and direction of linear associations between any pair of variables were assessed. 

Here, the p-value served as an indicator of the statistical confidence in these linear 

relationships. Notably, an inverse pattern emerged between the two output measures; the 

biochar yield exhibited a strong negative correlation with fixed carbon (FC), evidenced by 

a correlation coefficient of -0.75, whereas carbon (C) content demonstrated a distinct 

positive correlation with FC, with a coefficient of 0.59. This inverse implies that conditions 

favoring one output tend to be detrimental to the other. The pyrolysis temperature followed 

a similar trend, facilitating the degradation of organic substances into volatiles and 

promoting the formation of a carbon-rich residue, leading to reduced yields but enhanced 

C content. Apart from thermal conditions, biochar yield revealed a positive association 

with cellulose content and a contrasting negative correlation with hemicellulose and lignin 

contents, with the magnitude of these correlations decreasing in that order. This 

observation aligns with previous findings, suggesting that at lower temperatures, 

hemicellulose and cellulose are more readily broken down compared to lignin, resulting in 

lower conversion rates to biochar (Zhang et al. 2024). This is due to the preferential 

degradation of lignin, hemicellulose and cellulose at the temperature level, where 

hemicellulose begins to decompose at lower temperatures around 170 to 300 °C, followed 

by the initial stages of cellulose degradation at similar temperatures, whereas the lignin 

component undergoes thermal decomposition over a wider temperature range between 170 

and 560 °C, with the more advanced stages of cellulose degradation occurring at higher 

temperatures between 300 and 360 °C, with more advanced stages of cellulose degradation 

occurring at higher temperatures between 300 and 36 0°C (Zhang et al. 2021). 

Furthermore, the Pearson correlation matrix also enabled the exploration of relationships 

among input variables.  

 
Fig. 1. Violin plot of (a) elemental composition, (b) proximate composition and HHV of biochar, (c) 
proximate composition of biomass, and (d) torrefaction conditions and biochar yield 
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Fig. 2. Pearson correlation matrix between any two variables 
 

 As an illustration, carbon content was positively correlated with the Higher Heating 

Value (HHV), with a correlation coefficient of 0.43, highlighting a direct link between 

these properties. Collectively, these correlations provide insights into the intricate 

dependencies within the biochar production process, influenced by both feedstock 

characteristics and process parameters. 
 

Model Development and Evaluation 
 RF and XGBoost are cutting-edge analytical tools in the realm of data mining, 

frequently employed for unraveling intricate non-linear associations among variables 

(Souaissi et al. 2023). This is due to the fact that they are powerful and flexible enough to 

handle a wide range of data types and sizes while providing good predictive performance. 

They are commonly used in situations where the goal is to achieve high accuracy without 

sacrificing much interpretability (Banik and Biswas 2024). Consequently, within the scope 

of this investigation, these sophisticated models were harnessed to forecast both the carbon 

content and the yield of biochar, capitalizing on their prowess in navigating complex 

interdependencies. 

 Model hyperparameters are key factors that affect the accuracy and generalisation 

of model predictions. Therefore, setting reasonable hyperparameters for the model is an 

important step in constructing the model (Bischl et al. 2023). To ensure the development 
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of high-performing machine learning models, hyperparameter optimization was carried out 

leveraging the training dataset. This process entailed employing a grid search methodology 

in conjunction with k-fold cross-validation, with the primary goal of minimizing Mean 

Squared Error (MSE) values. Lower MSE scores were indicative of enhanced predictive 

capabilities for the models, thus guiding us towards the most advantageous hyperparameter 

configurations (Zhao et al. 2024). Moreover, employing the average of multiple folds in n-

fold cross-validation mitigates the variability in model assessment that can arise from 

arbitrary data partitioning, thereby diminishing the likelihood of inflated performance 

estimates due to chance and reducing the risk of overfitting subsequent to hyperparameter 

tuning. For the XGBoost model, Max depth, Min child weight, and subsample bytree are 

the key hyperparameters that determine its prediction accuracy; whereas the performance 

of the Random Forest model is highly dependent on the hyperparameter settings of 

n_estimators, Max depth, Min samples leaf, and Min samples split. Therefore, in this 

section, a grid search tuning approach was used to search the entire hyperparameter space 

within the model hyperparameter space given above and determine the model 

hyperparameter combination that possesses the best predictive performance through the 

MSE results of the 5-fold cross-validation in order to improve the accuracy and 

generalisation of the XGBoost model for predicting the biochar yield and C content. The 

results of well-tuned hyperparameters are listed in Table 1.  

 

 
Fig. 3. Comparison of predicted biochar yield/C content and actual values using collected data: (a-
b) XGBoost modeling, (c-d) RF modeling 
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Table 1. Well-tuned Hyper-parameters of ML Models for Predicting C-content 
and Biochar Yield 

Model Hyperparameters Range Optimized Value 

RF n_estimators 10 to 80 50 

 Max depth 1 to 9 9 

 Min samples leaf 1 to 9 1 

 Min samples split 2 to 9 3 

XGBoost Max depth 1 to 10 5 

 Min child weight 1 to 8 1 

 Sub sample 0.1 to 0.9 0.7 

 Col sample by tree 0.1 to 0.9 0.8 

 Learning rate 0.1 to 0.9 0.25 

 Gamma 0 to 0.5 0 

 Reg_alpha 0 to 0.5 0.001 

 Reg_lambda 0 to 0.1 0.1 

 

In pursuit of refining the models to their optimal state, a variety of machine learning 

models were recalibrated utilizing the training dataset, now equipped with meticulously 

adjusted hyperparameters. Subsequently, their efficacy was gauged against the test dataset. 

The outcomes illuminated the proficiency of both XGBoost and RF in anticipating biochar 

yield and carbon content, as attested by their high mean training R² scores (0.98 and 0.99, 

respectively) and similarly robust mean testing R² scores (0.91 for XGBoost and 0.94 for 

RF). Given that XGBoost marginally outperformed RF in terms of simulation accuracy, it 

was elected as the prime candidate for the succeeding feature importance examination. 

 Within the confines of this research, XGBoost excelled in forecasting both biochar 

yield and carbon content, exhibiting the utmost values for both training and testing R², 

alongside the minimal values for training and testing RMSE at 1.06 and 4.79, respectively 

(depicted in Figs. 3(a) and (b)). This distinguished XGBoost as a highly resilient machine 

learning model for biochar yield predictions, boasting exceptional capability to generalize 

beyond the training data. Given its standout performance, there’s a compelling case for a 

deeper exploration into the underlying dynamics. Consequently, the SHAP method was 

employed to elucidate the model's workings, thereby capitalizing on XGBoost’s robust 

predictive power. 

 

Interpretability Results 
 To delve deeper into the interpretability of machine learning models, particularly 

the best-performing XGBoost model in the study, a comprehensive feature importance and 

SHapley Additive exPlanations (SHapley Additive exPlanations) analysis was carried out. 

These assessments cover the full range of input attributes, including the elemental and 

approximate composition of the biomass feedstock, as well as the operational parameters 

of the pyrolysis process. In this case, feature importance becomes a key diagnostic tool, 

making it possible to measure the role that each predictor plays in forming the model’s 

predictions of the target variables (in this case, biochar yield and carbon content). By 

elucidating the correlation between each feature and the outcome, one can gain a clearer 

understanding of the underlying mechanisms that drive the model’s predictive accuracy 

(Saarela and Jauhiainen 2021). As presented in Fig. 4(a), given its critical role in regulating 

the carbonization and volatilization processes that occur in biochar formation, temperature 
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was the most dominant factor affecting the elemental composition of biochar (Su and Jiang 

2024). Furthermore, temperature emerged as the paramount influence on both FC and VM, 

while the ash content of the resultant biochar directly mirrored that of the initial biomass, 

which is consistent with the patterns observed in Pearson correlation coefficients. Indeed, 

temperature acts as the chief catalyst in the pyrolytic reactions, exerting a substantial sway 

over biochar yield. An increase in the pyrolysis temperature triggered profound alterations 

in the biomass’s physical and chemical characteristics, triggering the liberation of volatile 

components and consequently leading to a diminished yield of biochar (Tomczyk et al. 

2020). Concurrently, the rise in temperature facilitated the progressive carbonization of the 

residual solid biomass, thereby exerting a profound effect on the compositional makeup 

and structural attributes of the biochar produced. 

 Nonetheless, the outcomes from PCC and feature important analyses diverge in 

their implications. A case in point is that PCC suggests the H and O contents in the biomass 

as the principal determinants of biochar yield, whereas feature importance highlights 

temperature as the vital element. This disparity stems from the differing lenses through 

which PCC and feature importance view variable relationships. PCC essentially quantifies 

linear associations between pairs of variables, and thus, it may fall short in fully 

encapsulating interactions that exhibit non-linear patterns or higher degrees of intricacy. 

Conversely, feature importance adopts a broader perspective, assessing the cumulative 

impact of each feature on the predictive efficacy of the machine learning model without 

being constrained by assumptions of linearity. It comprehensively evaluates contributions, 

even in the presence of complex, non-linear relationships, offering a more nuanced 

understanding of the relative significance of each feature (Rengasamy et al. 2022). 

 Illustrated in Figs. 4(b) and 4(c), SHAP analysis elucidates the individual impact of 

each input feature on biochar yield results. By assigning a quantitative SHAP value to each 

data entry, it measures the extent to which each input variable contributes to the predicted 

output. Positive SHAP scores represent features that enhance the predicted value, while 

color coding (red for high and blue for low original eigenvalues) helps to understand the 

magnitude and direction of the impact visually. Both temperature and oxygen (O) content 

adversely affect biochar yield and carbon content, and temperature further dominates the 

approximate analysis of biochar properties. Although increasing pyrolysis temperature 

enhances the carbon stability in biochar by increasing the decomposition of biomass, it is 

negatively correlated with biochar yield. In contrast, a higher calorific value (HHV) in 

biomass indicates a higher carbon-oxygen ratio, which is more conducive to the pyrolysis 

process and thus increases biochar production (Seow et al. 2022). This reflects that biomass 

with higher energy density, which is characterized by higher carbon content and less 

oxygen, can be more efficiently converted into biochar during pyrolysis, resulting in higher 

yields. More specifically, in the biochar manufacturing process, temperature regulation and 

oxygen management are two core elements that directly affect the yield of biochar and its 

carbon content. An increase in temperature accelerates the pyrolysis process of biomass, 

leading to the precipitation of volatiles and the conversion of biomass into biochar with a 

high density carbon structure (Vuppaladadiyam et al. 2022). However, high temperatures 

enhance the carbon stability of the biochar, but they reduce the overall biochar yield due 

to the conversion of large amounts of organic matter into gases and other non-solid 

products. The involvement of oxygen then catalyzes the oxidation reaction, consuming the 

combustible fraction of the biomass and reducing the carbon source for biochar formation. 

Therefore, limiting the supply of oxygen during the pyrolysis stage prevents complete 

oxidation of the biomass, thus retaining more carbon for biochar generation (Zou et al. 
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2024). In addition, the calorific value (HHV) of the feedstock biomass is also an important 

factor. A high HHV often implies a high carbon-oxygen ratio, i.e., the biomass contains a 

high energy density inside, which is reflected in a high carbon and low oxygen content; 

such biomass is more favorable to be converted into biochar under pyrolysis conditions 

because its high carbon and low oxygen characteristics are conducive to the construction 

of a stable carbon skeleton (Liu et al. 2023). 

 In summary, the combination of feature importance and SHAP analyses proves 

instrumental in pinpointing the salient factors shaping biochar attributes during pyrolysis. 

Specifically, temperature alongside biomass properties, notably O and ash content, stand 

out as paramount influencers of biochar characteristics. Elevating the temperature 

accelerates both the release of volatile components and the carbonization process in 

biomass, thereby driving transformative shifts in the resultant biochar’s properties.  

 

Fig. 4. Effects of input variables on biochar yield and C content based on XGBoost model using (a) 
feature importance and (b-c) SHAP analyses. 

 

 
CONCLUSIONS 
 

The production and characteristics of biochar are governed by the choice of biomass 

and the specifics of the pyrolysis process.  

1. This study evaluated two machine learning algorithms to anticipate biochar yields 

and carbon content via XGBoost models and demonstrated the utmost predictive 

precision, boasting R² scores ranging from 0.92 to 0.98.  

2. Through meticulous examinations of feature importance and SHAP analyses, it was 

elucidated that temperature plays a pivotal role in dictating biochar yield, while O- 

content is a crucial determinant of C-content within the biochar.  

3. Collectively, the XGBoost model provided accurate predictions of biochar yield 

and C content and revealed the effects of feedstock and pyrolysis temperature on 
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pyrolysis. This study has provided a comprehensive understanding of biochar 

production through biomass pyrolysis, thus providing engineers with a strategic 

direction to optimise biochar yield or its carbon enrichment. 
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