ADSORPTION CHARACTERIZATION OF CO(II) IONS ONTO CHEMICALLY TREATED QUERCUS COCCIFERA SHELL: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES

M. Hamdi Karaoglu, Mehmet Uğurlu, İbrahim Kula

Abstract


Quercus coccifera shell (QCS), a relatively abundant and inexpensive material, is currently being investigated as an adsorbent to remove cobalt(II) from water. Before the adsorption experiments, QCS was subjected to chemical treatment to provide maximum surface area. Then, the kinetics and adsorption mechanism of Co(II) ions on QCS were studied using different parameters such as adsorbent dosage, initial concentration, temperature, contact time, and solution pH. The loaded metals could be desorbed effectively with dilute hydrochloric acid, nitric acid, and 0.1 M EDTA. The Langmuir and Freundlich models were used to describe the uptake of cobalt on QCS. The equilibrium adsorption data were better fitted to Langmuir adsorption isotherm model. The maximum adsorption capacity (qm) of QCS for Co(II) was 33 mg g-1. Various kinetic models were used to describe the adsorption process. The adsorption followed pseudo second-order kinetic model. The intraparticle diffusion was found to be the rate-limiting step in the adsorption process. The diffusion coefficients were calculated and found to be in the range of 3.11×10−6 to 168.78×10−6 cm2s-1. The negative DH* value indicated exothermic nature of the adsorption.

Keywords


Adsorption; Divalent cobalt; Quercus coccifera shell; Desorption; Kinetics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126