MODAL FREQUENCIES TO ESTIMATE THE DEFECT POSITION IN A FLEXURAL WOODEN BEAM

Mehran Roohnia, Negin Manouchehri, Ajang Tajdini, Saber Yaghmaeipour, Vilma Bayramzadeh

Abstract


An inexpensive methodology is proposed to identify and locate a single defect within a wooden beam using free a flexural vibration technique. A similar approach has been introduced in the literature based on free longitudinal vibration, which was selected to be a leading frontier for the present research. The flexural vibration technique was tested for five groups of the absolutely clear specimens while holding a manually drilled hole at 0.1, 0.2, 0.3, 0.4, and 0.5 of their total span. The beams were tested in free flexural vibration with both ends in a free condition before and after drilling, and relative shifts of modal frequencies due to the presence of the defects were measured and compared to their mathematically calculated values in a sinusoidal equation. Using the method of least squares, a coincidence factor was developed based on the differences of the measured and calculated shifts of the four initial resonance frequencies where the minimum district of the coincidence factor curves successfully indicated the defected area. Though the longitudinal vibration approach was promising enough to estimate the position of the defect, its combination with the flexural vibration might increase the degree of confidence in the identifications.

Keywords


Defect; Drilled hole; Least square; Vibration; Wood

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126