Lei Zhang, Jihong Li, Shizhong Li, Zonglin Lewis Liu


Xylose-extracted corncob residue (X-ER), a byproduct from the xylose production industry, is a potential cellulose-rich energy resource. However, attempts to achieve large-scale production of cellulosic ethanol using X-ER have been unsatisfactory due to a lack of understanding of the substrate. This study presents the first characterization of the X-ER to evaluate its potential utilization in the sequential production of cellulosic ethanol. The current dilute acid treatment procedures used for the corncobs by the xylose-production industry were insufficient for efficient deconstruction of cellulose structure to release available sugars for subsequent cellulosic ethanol conversion. After a secondary dilute acid hydrolysis of the X-ER, an additional 30% hemicellulose was recovered. In addition, a more efficient enzymatic hydrolysis of X-ER was observed resulting in a significantly higher yield of glucose conversion compared with an untreated X-ER control. These results suggest X-ER can be utilized for cellulosic ethanol production. However, improved corncob pretreatment procedures are needed for economical cellulosic ethanol conversion.


Cellulose acid hydrolysis; Enzymatic saccharification; Cellulosic ethanol production

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126