PYROLYSIS OF CRUDE TALL OIL-DERIVED PRODUCTS

Hanna Elina Lappi, Raimo Alén

Abstract


Crude tall oil (CTO) soap, purified and neutralised CTO, and neutralised distilled tall oil (DTO) were pyrolysed (at 750ºC for 20 s) by pyrolysis gas chromatography with mass-selective and flame ionisation detection (Py-GC/MSD and FID) to clarify their thermochemical behaviour. In each case, the pyrolysates were characteristically dependent on the feedstock, and a wide range of volatile aliphatic and aromatic compounds with some chemically bound oxygen formed. The CTO soap pyrolysate was typically composed of initial extractives-type compounds together with a significant amount of unsaturated aliphatic hydrocarbons and aromatics, whereas the DTO pyrolysate contained mostly just unsaturated aliphatic hydrocarbons and aromatics. These data are of importance when considering the suitability of various extractives-derived resources for producing bioliquids and chemicals.

Keywords


Pyrolysis; Crude tall oil soap; Distilled tall oil; Extractives; Fatty acids; Resin acids; Biofuels

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126