Lichao Sun, Fengqiang Wang, Yanjun Xie, Jianwen Feng, Qingwen Wang


Fire retardant particles (guanylurea phosphate and boric acid) with a morphological characteristic of large crystal or fine microsphere, were respectively applied to wood fibers to make medium density fiberboard (MDF). The effects of particle size of the fire retardant on the combustion performance of the resulting MDF samples were determined using a thermogravimetric (TG) analyzer and cone calorimeter (CONE). The scanning electron microscopy and laser particle size analysis showed that the microspheric particles of fire retardant had a mean size of approximately 20 µm, which was smaller than the crystal (260 um). Incorporation of the fire retardant either in the crystal or microsphere shape reduced the weight loss of the resulting MDF, as evidenced by the TG analysis and the CONE test; the release rate and total amount of both the heat and smoke were apparently inhibited as compared to the untreated MDF samples. Treatments caused an increase in both the ignition time and charring ratio of the MDF. Compared with the fire retardant crystals, the fine microspheric particles exhibited greater ability in inhibiting the release of heat and smoke through the combustion processes.


Microspheres; Medium density fiberboard; Fire retardant;

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126