PHYSICAL AND CHEMICAL PERFORMANCE OF EUCALYPTUS WOOD WITH IMPREGNATED CHEMICALS

Guofeng Wu, Qian Lang, Heyu Chen, Junwen Pu

Abstract


Methylolurea and carbamide were used to impregnate eucalyptus wood to improve its physical and chemical properties. The physical properties and dimensional stability were examined. TGA was used to evaluate the thermal stability of the wood. FTIR was used to state the changes of functional groups. The changes of wood structure were observed by SEM. The results showed the bending strength and compressive strength parallel to the grain increased by 15.10% and 16.78%, respectively. The basic density of modified wood was improved by 14.29%. The shrinkage of volume and swelling of volume were significantly decreased compared to the untreated wood. The TGA results indicated that the mass loss was around 8% during the second stage, from 120°C up to 280°C, while the mass loss of treated wood was around 4%. The treated wood exhibited LOI (limited oxygen index) values of about 42%, while the natural wood exhibited a LOI value of 22%. The FTIR analysis successfully showed that chemical bond was produced between wood and methylolurea as a result of chemical reaction between wood and methylolurea. The SEM results indicated that the transverse and tangential sections of the treated specimens were filled with the reaction products, which can prevent the absorption of moisture.

Keywords


Chemical modification; Eucalyptus; Methylolurea; Physical and Chemical performance

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126