Songlin Wang, Jianlin Huang, Fushan Chen


Mg-Al-CO3 LDH was synthetized, using co-precipitation, and was used in flame-retardant paper as filler. The crystallizations, granularities of Mg-Al LDH, and characters of flame-retardant papers were investigated through XRD, FT-IR, TEM, TG-DTA, and SEM techniques. The results indicated that Mg-Al hydrotalcites were layered hexagonal nanoparticles, with high positive charge density, perfectly crystallized structure, and striking performance in furnish retention improvement. Mg-Al hydrotalcites with high whiteness can improve the whiteness of flame-retardant paper; the whiteness of flame-retardant paper increased by 82.1% while the dosage of LDH was 20wt%, but the Mg-Al hydrotalcites affected the strength index of flame-retardant paper adversely. The flame-retardant papers based on fiber using Mg-Al hydrotalcites as fillers showed excellent inflaming retarding performance. The oxygen index of the flame-retardant paper produced was above 25% at the dosage of 20wt%.


Mg-Al hydrotalcites; Flame-retardant paper; Flame retardant

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126