BIOSORPTION OF LEAD (II) ON MODIFIED BARKS EXPLAINED BY THE HARD AND SOFT ACIDS AND BASES (HSAB) THEORY

Cedric Astier, Vincent Chaleix, Celine Faugeron, David Ropartz, Pierre Krausz, Vincent Gloaguen

Abstract


Chemical modification of Douglas fir bark and its subsequent utilization in adsorption of Pb(II) from aqueous solutions was investigated. The polysaccharidic moiety of barks was functionalized by periodate oxidation and derivatized after reductive amination in the presence of aminated oligo-carrageenans. Pb(II) adsorption isotherms of derivatized barks were then determined and compared to the capabilities of crude barks using the Langmuir adsorption model in terms of affinity (b) and maximum binding capacity (qmax). Compared to crude barks, the derivatization of barks by oligo-carrageenans resulted in significant enhancements of qmax and b by up to x8 and x4, respectively. The results obtained from crude barks on chemically grafted carboxylic and sulfated barks are discussed and interpreted through the Hard and Soft Acids and Bases (HSAB) theory.

Keywords


Douglas fir barks; Chemical modification; biosorption; Langmuir isotherm; Lead

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126