BACILLUS SUBTILIS SJ01 PRODUCES HEMICELLULOSE DEGRADING MULTI-ENZYME COMPLEXES

Sarah M. Jones, J. Susan van Dyk, Brett Ivan Pletschke

Abstract


Cellulose and hemicellulose account for a large portion of the world’s plant biomass. In nature, these polysaccharides are intertwined, forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs) consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The aim of this study was to isolate and characterise a (hemi-) cellulolytic MEC from the aerobic bacterium, Bacillus subtilis SJ01, using ultrafiltration followed by size-exclusion chromatography on a Sephacryl S-400 column. Two MECs, C1 and C2 of 371 and 267 kDa, respectively, were purified, consisting of 16 and 18 subunits, respectively, five of which degraded birchwood and oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan) with higher efficiency than amorphous cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg carboxymethyl cellulose - CMC). Low or no binding to insoluble substrates indicated that the MECs lacked some of the features characteristic of cellulosomes. The significance of this study lies in the discovery of MECs that differ structurally from cellulosomes that can hydrolyse substrates with high hemicellulose content.

Keywords


Bacillus subtilis; Cellulosome; Hemicellulases; Lignocellulose; Multi-enzyme complexes; Synergy; Xylanase; Xylanosome

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126