Zhijia Liu, Zehui Jiang, Zhiyong Cai, Benhua Fei, Yan Yu, Xing'e Liu


Bamboo is a type of biomass materials that has great potential as a bio-energy resource in China. The thermal-mechanical behavior of bamboo plays an important role in the formation process of pellets. To investigate the effect of moisture content (MC) on thermal-mechanical behavior of bamboo, the storage modulus and loss factor of moso bamboo was determined using dynamic mechanical thermal analysis (DMTA) from -50 to 150 oC. The experimental results showed that the general feature of bamboo thermal-mechanical properties with temperature is similar to other cellulosic materials, and they are affected by MC. A substantial decrease of storage modulus over the entire temperature range implies that bamboo underwent a glass to rubber transition. Bamboo, at lower MC, has a higher storage modulus, which decreases the mechanical strength of pellets. The loss factor exhibited two major transitions for all samples. There was an α-transition (α1), attributed to glass transition of lignin, peaking in a higher temperature range. The second major relaxation (α2), located in a lower temperature range, was attributed to glass transition of hemicelluloses. Activating lignin and hemicelluloses using moisture and temperature in the temperature range of glass transition can be very helpful to achieve durable particle-particle bonding.


Biomass; Bamboo; Bamboo pellet; Thermal-mechanical behavior; Glass transition

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126