Mei Xu, Hongqi Dai, Xuan Sun, Shumei Wang, Weibing Wu


TEMPO-mediated oxidation has been reported to effectively convert C6 primary hydroxyl groups to carboxyl groups for better water-solubility. However, the pH decreases continuously during the oxidation process, and it is therefore difficult to maintain the stability of the reaction. The control of pH at a constant level throughout the oxidation process is a complicated task. The applicability of a carbonate buffer system and a borax buffer system with various continuous addition rate of sodium hypochlorite solution was considered. Carbonate buffer solution and borax buffer solution can efficiently buffer the pH. The results of carboxyl content and DP of celluloses proved that the activities of sodium hypochlorite solution can be maintained when sodium hypochlorite is added with controlled flow rates without adjusting pH by hydrochloric acid. Buffer solutions created a milder reaction environment in which the damage of celluloses would be buffered. The conclusion was consistent with DP tests of celluloses. Compared with carbonate buffer, the borax buffer with high ability of penetration could enhance the depth and width of oxidation, which was demonstrated by the results of X-ray diffraction patterns and carboxyl content of celluloses.


TEMPO; Cellulose; Oxidation; Buffer solution; Drop rate; Carboxyl content

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126