Nesrin Ozmen, Ozfer Yesilada


Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L), 70% (35 mg/L), and 98% (49 mg/L) for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF). Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.


Biomaterials; Biosorption; Decolorization; Fermentation; Laccase; Lignocellulosics; Textile dye; White rot fungi

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126