GROWTH OF POLYELECTROLYTE ON LIGNOCELLULOSIC FIBRES: STUDY BY ZETA POTENTIAL, FTIR, AND XPS

Houssein Awada, Daniel Montplaisir, Claude Daneault

Abstract


A layer-by-layer (LbL) self-assembly technique using polyallylamine hydrochloride (PAH) and polyacrylic acid (PAA) was employed to build up polyelectrolyte multi-layers on pretreated thermomechanical pulp fibres. These pretreated fibres previously had been oxidized by means of a 4-acetamido TEMPO-mediated process in order to create carboxylic functions. These allow the subsequent formation of amide bonds between PAH and fibres. X-ray photo-electronic spectroscopy (XPS) analyses confirmed the formation of amide bonds between the carboxylic function on the fibres and the primary amine function of the PAH. Besides, the surface charge intensity of the coated fibres was determined by measuring the zeta potential after each treatment step.

Keywords


Thermomechanical pulp; XPS; Zeta potential; FTIR; TEMPO oxidization

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126