INFLUENCE OF CELLULOSE POLYMERIZATION DEGREE AND CRYSTALLINITY ON KINETICS OF CELLULOSE DEGRADATION

Edita Jasiukaitytė-Grojzdek, Matjaž Kunaver, Ida Poljanšek

Abstract


Cellulose was treated in ethylene glycol with p-toluene sulfonic acid monohydrate as a catalyst at different temperatures. At the highest treatment temperature (150 °C) liquefaction of wood pulp cellulose was achieved and was dependant on cellulose polymerization degree (DP). Furthermore, the rate of amorphous cellulose weight loss was found to increase with cellulose degree of polymerization, while the rate of crystalline cellulose weight loss was reciprocal to the size of the crystallites. The cellulose degradation was studied by monitoring of the molecular mass decrease by size-exclusion chromatography. It was revealed that microcrystalline cellulose degrades via a ‘quantum mode’ mechanism, while the degradation of Whatman filter paper no 1. and cotton linters proceeded randomly and were partly dependent on the starting polymerization degree, crystallinity, and treatment temperature. The kinetics of cellulose degradation in heterogeneous media was described by means of a one-stage model, characterised by the consumption of glycosidic bonds in amorphous and crystalline cellulose regions until the levelling-off degree of polymerization is reached.

Keywords


Cellulose; Acid-catalyzed degradation; ‘Quantum mode’ mechanism; Ethylene glycol; p-Toluene sulfonic acid monohydrate; Kinetics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126