HIGH-PERFORMANCE CELLULOSE NANOFIBRIL COMPOSITE FILMS

Yan Qing, Ronald Sabo, Yiqiang Wu, Zhiyong Cai

Abstract


Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing, dynamic mechanical analysis, scanning electron microscopy, atomic force microscopy, thermo-gravimetric analysis, and moisture/water absorption. Neat CNF films had tensile stress and Young’s modulus of 232 MPa and 4.79 GPa, respectively. PF resin was found to be well dispersed in the composites, although the resin increased the roughness of the film surfaces. Hygroscopic capacities of the composites were dramatically reduced, as compared to neat films, in both high humidity environments and when soaked in water. The composites exhibited slightly reduced tensile strength with modestly increased storage modulus compared to neat CNF films. Remarkably, the work of fracture ranged from 20 to 27 MJ/m3, making these films among the toughest reported for cellulose nanocomposites.

Keywords


Cellulose nanofibril; Phenol formaldehyde; Mechanical properties; Electron microscopy; Thermal degradation; Hygroscopic capacity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126