PROCESS OPTIMIZATION FOR SUGARS PRODUCTION FROM RICE STRAW VIA PRETREATMENT WITH SULFUR TRIOXIDE MICRO-THERMAL EXPLOSION

Fenghe Li, Risheng Yao, Huai Wang, Huajia Hu, Ranran Zhang

Abstract


The effects of sulfur trioxide micro-thermal explosion (STEX) and enzyme loading on reducing sugars conversion of STEX-treated rice straw and enzymatic hydrolysates were researched. Important process parameters in the pretreatment of biomass were identified by a Plackett-Burman design, and parameters with significant effects were optimized using a Box-Behnken design (BBD) and response surface methodology (RSM). The optimal conditions were a temperature of 80 °C and a treatment time of 30 min when only single factors were considered. Meanwhile, glucose and xylose were primary components in the enzymatic hydrolysates. Subsequently, STEX time, liquid-solid ratio, and soaking temperature were the main factors governing the enzymatic saccharification of rice straw. The optimum pretreatment conditions were STEX time 23.3 min, liquid-solid ratio 13.3 (V/m), and soaking temperature 62.2 °C. The chemical composition analysis of straw further demonstrated that STEX collaborative dilute lye pretreatment could remove lignin and hemicellulose.

Keywords


Rice Straw, Sulfur Trioxide Micro-Thermal Explosion (STEX), Dilute Lye, Saccharification, Response Surface Methodology

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126