Na Liu, Menghua Qin, Yang Gao, Zongquan Li, Yingjuan Fu, Qinghua Xu


It is important to further improve the strength properties of alkaline peroxide mechanical pulp (APMP) in order to extend its applications in more paper grades. In this work, aspen APMP was pretreated by xylanase, and its effect on the improvement of paper strength properties was investigated. The results showed that, for xylanase-pretreated pulp, the tensile, tear and burst indexes were respectively about 14%, 23%, and 18% greater than those of untreated pulp. Meanwhile, the fines content and kink index decreased to some extent with the enzyme treatment. The total carboxyl content, crystallinity index, and water retention value of the pulp was increased significantly, and a higher porosity was observed on the fiber surface. Further investigation revealed that the lignin coverage of the fiber surface decreased from 59.2% to 55.2% after enzyme treatment, and the C1/C2 ratio decreased from 24.4 to 14.4. The improvement of strength properties can be ascribed to the increase in carboxyl groups and crystallinity, and a decrease in fines content and kink index, as well as to the removal of a portion of xylan and lignins from the fiber surfaces.


Xylanase; Alkaline Peroxide Mechanical Pulp; Fiber; Pulp Strength

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126