Telmo F. M. Morgado, Alfredo M. P. G. Dias, José S. Machado, João H. Negrão


Generation of virtual poles, based on the statistical distribution of selected visual and physical properties, and the estimation of their mechanical properties are of great help for predicting the quality of the roundwood that a forest stand can provide. With this objective in mind, an algorithm, SIMPOLE (SIMulator of POLEs), was developed. This algorithm allows the generation of pole’s geometry, as well as the mechanical properties of clear wood and the distribution of knots along its length. This generation is made through statistical distributions. The generated poles are simulated, either according to standard EN14251 or according to EN14229, for testing with simple supported beam conditions or with cantilever beam conditions, respectively. The algorithm outputs are: the bending strength, the modulus of elasticity, the location, and cause of failure. The algorithm was calibrated with a sample of 56 maritime pine utility poles and validated with another sample of 57 small diameter maritime pine poles. The results for the validation sample show: for bending strength, a mean error of 16.9%, and for modulus of elasticity, a mean error of 17.2%. Based on these results, the algorithm shows potential to estimate mechanical characteristics of small diameter poles from a forest.


Simulation models; Stochastic models; Roundwood; Poles; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126