Jia Yao, Yingcheng Hu, Wei Lu


In response to increasing awareness of the environment and energy, the fields of application for new types of plant fiber functional materials are expanding. In this study, different weight proportions of coir fiber were added to wood particle debris to produce hybrid boards. The two forms of coir fiber used were random distribution and non-woven needle mat. A mixed orthogonal experiment was designed to use the weight mixing ratio of wood debris and coir, the density of the hybrid boards, and the mixing form of the raw material as the experimental factors. The mechanical and sound absorption performances were evaluated. The experimental results provided evidence that the addition of the coir fibers enhanced the mechanical performance and sound absorption performance of the hybrid boards. The non-woven needle mat form in particular was effective at evenly distributing the fibers. The optimal plan for this kind of hybrid composite was obtained through experimental analysis. The excellent sound absorption performance and sufficient strength of the hybrid boards made them suitable for use on inner walls as sound-absorbing material or on interior trim parts in automotive applications. The research results demonstrated the advantages of using coir fiber and wood debris resources.


Hybrid board; Coir fiber; Modulus of rupture (MOR); Sound absorption performance

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126