Jing Shen, Xueren Qian


Superhydrophobic materials have a lot of interesting potential applications. The self-cleaning property is a unique feature. Rendering the water-loving cellulosic paper superhydrophobic can open the door for value-added applications. Superhydrophobic paper is a fairly new area, and only very limited scientific publications are available in the literature. Among these publications, the topics on the use of mineral pigments in fabrication of superhydrophobic structures account for a large proportion. During the fabrication process, mineral pigments, e.g., silica, precipitated calcium carbonate, and clay, generally need to be hydrophobized, either directly or indirectly. Mineral pigments can be applied to cellulosic paper by surface treatment or wet-end filling, and good dispersabilities of these pigments are always highly demanded. A key mechanistic point is that by tunable particle packing or fabrication, mineral pigments may exhibit surface-roughening effects, which are critical for superhydrophobicity development. The roughening of a hydrophobic surface helps to enhance hydrophobicity. Possible concepts such as nano-structuring or controllable surface patterning of mineral pigments may help to improve superhydrophobicity. Environmental friendliness will also guide the scientific/technical development in this area.


Mineral pigments; Superhydrophobic paper; Cellulosic paper; Surface roughening; Precipitated calcium carbonate; Silica; Clay; Fillers; Fabrication; Hydrophobic pigments

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126