STUDY OF ENZYMATIC HYDROLYSIS OF PRETREATED BIOMASS AT INCREASED SOLIDS LOADING

Michael Ioelovich, Ely Morag

Abstract


The effect of biomass loading from 50 to 200 g/L on enzymatic hydrolysis was studied using switchgrass samples pretreated by dilute acid and hypochlorite-alkaline methods. It was confirmed that an increase of initial loading of the pretreated biomass leads to a decrease of enzymatic digestibility, probably due to difficulty of mass transfer of cellulolytic enzymes in the high-viscous substrate slurry and also because of an inhibiting effect of the formed sugars. An additional sharp problem connected with enzymatic hydrolysis at the high-solids loading is absorption and retention of liquid hydrolysate by residual non-hydrolyzed biomass that causes diminution of the available volume (Va) of the sugar solution and decreases productivity of the saccharification process. To optimize the high-solids enzymatic hydrolysis, the maximal amount of the formed sugars was determined Am = Cm x Va,m , where Cm is maximal concentration of the sugar solution and Va,m is maximal available volume. Such an approach makes it possible to find the optimal conditions for the hydrolysis: optimal biomass loading and hydrolysis time. After enzymatic hydrolysis at these optimal conditions, the low-lignified biomass pretreated by hypochlorite-alkaline method displayed much more available volume of sugar solution and higher digestibility characteristics than the cellolignin obtained by acidic pretreatment of the initial biomass sample.

Keywords


Switchgrass; Pretreated biomass; Biomass loading; Enzymatic hydrolysis; Available volume of hydrolyzate; Amount of sugar; Optimal hydrolysis conditions; Maximal digestibility characteristics

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126