EVOLUTION OF TEMPERATURE AND MOISTURE PROFILES OF WOOD EXPOSED TO INFRARED RADIATION

Erzsébet Cserta, Gergely Hegedűs, Róbert Németh

Abstract


In this article we studied the mechanism of wood drying using infrared (IR) heat transfer. Norway spruce (Picea abies (L.) Karst.) samples of 50 mm and 200 mm thickness were exposed to IR radiation, and the temperature and moisture profiles were recorded at the surface and at the core of the samples under controlled experimental conditions. It is proposed that the moisture transport in wood during drying is governed by osmotic effects. Based on such a hypothesis, the temperature stagnation was explained by a lower localized pressure at the core, which reduced the boiling point temperature of water. As moisture is drawn away due to osmosis from the central region, it cannot fill the empty lumens again; therefore, the pressure decreases locally. The evaporation of the internal moisture is brought about by a partial vacuum resulting in the disappearance of the liquid water.

Keywords


Infrared thermal treatment; Wood drying

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126