THE EFFECT OF DENSIFICATION TEMPERATURE ON SOME PHYSICAL AND MECHANICAL PROPERTIES OF SCOTS PINE (PINUS SYLVESTRIS L.)

Onur Ulker, Ozgür Imirzi, Erol Burdurlu

Abstract


As wood’s density increases, strength properties tend to increase due to a decrease in cavity volume. This study aimed to determine the effect of temperature levels in the densification process with an open-system thermomechanical method on the density, bending, modulus of elasticity in bending, compression, shear strength, and Brinell hardness in radial/tangential directions of Scots pine. The densification process significantly increased the strength properties of Scots pine. This increase stemmed from the decrease in the rate of cavities with the densification process, which also resulted in an increase in cell wall elements that have load-bearing properties per unit volume. An increase in densification temperature decreased strength properties. The decrease in the strength values can be explained by increasing chemical degradation with a rise in the temperature level. The most suitable temperature level was 120ºC for a higher bending, shear, and compression strength, and it was 140ºC for a higher radial and tangential hardness in the densification of Scots pine. Increases of 42% in the bending strength, 20% in the shear strength, 47% in the compression strength, 242% in the radial hardness, and 268% in the tangential hardness were obtained after densification.

Keywords


Densification; Scots pine; Thermal process; Mechanical properties of wood

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126