CHEMICAL THERMOSTABILIZATION FOR THE PREPARATION OF CARBON FIBERS FROM SOFTWOOD LIGNIN

Jian Lin, Satoshi Kubo, Tatsuhiko Yamada, Keiichi Koda, Yasumitsu Uraki

Abstract


A thermally fusible softwood lignin was directly isolated by a solvolysis of cedar wood chips with a mixture of polyethylene glycol 400 (PEG 400) and sulfuric acid. Its fusibility was found to be due to a PEG moiety introduced into the lignin by the solvolysis. The lignin was easily formed into fibers by melt-spinning at temperatures ranging from 145 to 172 °C without any modification. The lignin fibers could be converted into infusible fibers as a precursor for carbon fibers (CFs) by conventional oxidative thermal stabilization processing in air or a stream of oxygen for 2 days. We found that the infusible fibers resulted from the partial cleavage of the PEG moiety from the lignin fibers after treatment with 6 M hydrochloric acid at 100 °C for 2 h. The infusible fibers were converted into CFs with a tensile strength of 450 MPa by carbonization at 1000 °C under a N2 stream.

Keywords


Polyethylene glycol (PEG); Lignin; Chemical thermostabilization; Carbon fibers; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126