ENGINEERED WOOD FLOORING WITH A DENSIFIED SURFACE LAYER FOR HEAVY-DUTY USE

Chang-Hua Fang, Pierre Blanchet, Alain Cloutier, Costel Barbuta

Abstract


High-density wood is required in wood flooring, especially in engineered wood flooring (EWF) designed for heavy-duty applications. However, high-density wood resources are limited and their cost is high. A densification treatment makes it possible for low- or moderate-density woods to replace harder species by modifying them into high-performance and high-value products, such as engineered wood flooring for heavy-duty applications. The general objective of this study was to develop a prototype of engineered wood flooring using sugar maple hygro-thermally densified surface layers. The results showed that thin sugar maple lumber densified at 200 °C under the combined effects of steam, heat, and pressure with a heat-resistant fabric had great potential for the manufacturing of engineered wood flooring for heavy-duty use. As a result of treatment, it acquired high density, improved mechanical properties, and it had a relatively high dimensional stability and an attractive color. Tests in conditioning rooms showed that the EWF with a densified sugar maple (Acer saccharum March.) surface layer presented the lowest amplitude distortion between the dry and humid conditions compared with the standard EWF (0.15 mm vs. 0.17mm and 0.25 mm).

Keywords


Engineered wood flooring, Wood densification, Compression, Sugar maple

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126