Preparation of Concrete Superplasticizer by Oxidation-Sulfomethylation of Sodium Lignosulfonate

Guang Yu, Bin Li, Haisong Wang, Chao Liu, Xindong Mu

Abstract


Modification of sodium lignosulfonate (SLS) via combined oxidation-sulfomethylation was employed to prepare concrete superplasticizer. It was found that the oxidation of SLS by peroxyacetic acid facilitated the subsequent sulfomethylation. After modification, both the molecular weight and sulfo group content were significantly increased, and thus the performance of SLS as water reducer was improved. With the water to cement ratio at 0.4 and 0.3% (w/w) modified SLS, the fluidity of cement paste could reach 185 mm, which was 15% higher than that with unmodified SLS. It was also comparable to the performance of commercial naphthalene superplasticizer under the same conditions.

Keywords


Sodium lignosulfonate; Concrete superplasticizer; Peroxyacetic acid; Black liquor

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126