Water-Resistant Soybean Adhesive for Wood Binder Employing Combinations of Caustic Degradation, Nano-Modification, and Chemical Crosslinking

Yuehong Zhang, Wuquan Zhu, Ying Lu, Zhenhua Gao, Jiyou Gu

Abstract


In an attempt to develop a soybean-protein wood adhesive with improved water resistance and good technical applicability, soybean protein was first degraded under strong alkali conditions and then subjected to chemical crosslinking combined with nano-modification. Results of plywood evaluation, GPC analysis, and XRD determination indicated that a soybean-protein adhesive that could bear 28 h boiling-dry cycled treatment according to standard JIS K6806-2003. The water-resistance improvement was attributed to both the chemical crosslinking of the degraded soybean protein (DSP) by MDI and the nano-modification of DSP by intercalated or exfoliated montmorillonite (MMT). Caustic degradation improved the technical applicability of the DSP adhesive by sharply reducing the viscosity of high-content protein solution. MMT nano-modification can obviously prolong the pot lives of MDI-modified DSP adhesives but slightly decrease their dry bond strength.

Keywords


Wood adhesive; Soybean protein; Caustic degradation; MMT nano-modification; Chemical crosslinking; Water resistance

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126